Development and selection of low-level multi-drug resistance over an extended range of sub-inhibitory ciprofloxacin concentrations in Escherichia coli.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 05 2020
Historique:
received: 02 12 2019
accepted: 30 04 2020
entrez: 31 5 2020
pubmed: 31 5 2020
medline: 15 12 2020
Statut: epublish

Résumé

To better combat bacterial antibiotic resistance, a growing global health threat, it is imperative to understand its drivers and underlying biological mechanisms. One potential driver of antibiotic resistance is exposure to sub-inhibitory concentrations of antibiotics. This occurs in both the environment and clinic, from agricultural contamination to incorrect dosing and usage of poor-quality medicines. To better understand this driver, we tested the effect of a broad range of ciprofloxacin concentrations on antibiotic resistance development in Escherichia coli. We observed the emergence of stable, low-level multi-drug resistance that was both time and concentration dependent. Furthermore, we identified a spectrum of single mutations in strains with resistant phenotypes, both previously described and novel. Low-level class-wide resistance, which often goes undetected in the clinic, may allow for bacterial survival and establishment of a reservoir for outbreaks of high-level antibiotic resistant infections.

Identifiants

pubmed: 32471975
doi: 10.1038/s41598-020-65602-z
pii: 10.1038/s41598-020-65602-z
pmc: PMC7260183
doi:

Substances chimiques

DNA, Bacterial 0
Ciprofloxacin 5E8K9I0O4U

Types de publication

Comparative Study Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8754

Références

Hughes, D. & Andersson, D. I. Selection of resistance at lethal and non-lethal antibiotic concentrations. Curr. Opin. Microbiol. 15, 555–560 (2012).
pubmed: 22878455 doi: 10.1016/j.mib.2012.07.005
Wei, R., Ge, F., Chen, M. & Wang, R. Occurrence of ciprofloxacin, enrofloxacin, and florfenicol in animal wastewater and water resources. J. Environ. Qual. 41, 1481–1486 (2012).
pubmed: 23099939 doi: 10.2134/jeq2012.0014
Sukul, P. & Spiteller, M. Fluoroquinoloe Antibiotics in the Environment. in Reviews of Environmental Contamination and Toxicology 131–162 (2007).
Fisher, H. et al. Continuous low-dose antibiotic prophylaxis for adults with repeated urinary tract infections (AnTIC): a randomised, open-label trial. Lancet Infect. Dis. 18, 957–968 (2018).
pubmed: 30037647 pmcid: 6105581 doi: 10.1016/S1473-3099(18)30279-2
Kelesidis, T. & Falagas, E. Substandard / Counterfeit Antimicrobial Drugs. 28, 443–464 (2015).
Andersson, D. I. & Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 12, 465–478 (2014).
pubmed: 24861036 doi: 10.1038/nrmicro3270
Wistrand-Yuen, E. et al. Evolution of high-level resistance during low-level antibiotic exposure. Nat. Commun. 9 (2018).
Bai, H. et al. Analysis of mechanisms of resistance and tolerance of Escherichia coli to enrofloxacin. Ann. Microbiol. 62, 293–298 (2012).
doi: 10.1007/s13213-011-0260-3
Boos, M. et al. In vitro development of resistance to six quinolones in Streptococcus pneumoniae, Streptococcus pyogenes, and Staphylococcus aureus. Antimicrob. Agents Chemother. 45, 938–942 (2001).
pubmed: 11181385 pmcid: 90398 doi: 10.1128/AAC.45.3.938-942.2001
Browne, F. A. et al. Single and multi-step resistance selection study in Streptococcus pneumoniae comparing ceftriaxone with levofloxacin, gatifloxacin and moxifloxacin. Int. J. Antimicrob. Agents 20, 93–99 (2002).
pubmed: 12297357 doi: 10.1016/S0924-8579(02)00120-6
Davies, T. A., Pankuch, G. A., Dewasse, B. E., Jacobs, M. R. & Appelbaum, P. C. In vitro development of resistance to five quinolones and amoxicillin-clavulanate in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 43, 1177–1182 (1999).
pubmed: 10223932 pmcid: 89129 doi: 10.1128/AAC.43.5.1177
Ching, C., Orubu, E. S. F., Wirtz, V. J. & Zaman, M. H. Bacterial antibiotic resistance development and mutagenesis following exposure to subminimal inhibitory concentrations of fluoroquinolones in vitro: a systematic literature review protocol. BMJ Open 1–6. https://doi.org/10.1136/bmjopen-2019-030747 (2019)
pubmed: 31666265 pmcid: 6830604 doi: 10.1136/bmjopen-2019-030747
Aldridge, K. E. et al. Lomefloxacin, a new fluoroquinolone. Studies on in vitro antimicrobial spectrum, potency, and development of resistance. Diagn. Microbiol. Infect. Dis. 12, 221–233 (1989).
pubmed: 2791485 doi: 10.1016/0732-8893(89)90019-9
Avrain, L. et al. Selection of quinolone resistance in Streptococcus pneumoniae exposed in vitro to subinhibitory drug concentrations. J Antimicrob Chemother 60, 965–972 (2007).
pubmed: 17693451 doi: 10.1093/jac/dkm292
Barry, A. L. & Jones, R. N. Cross-resistance among cinoxacin, ciprofloxacin, DJ-6783, enoxacin, nalidixic acid, norfloxacin, and oxolinic acid after in vitro selection of resistant populations. Antimicrob. Agents Chemother. 25, 775–777 (1984).
pubmed: 6234858 pmcid: 185641 doi: 10.1128/AAC.25.6.775
Jonas, D. et al. Development and mechanism of fluoroquinolone resistance in Legionella pneumophila. J. Antimicrob. Chemother. 51, 275–280 (2003).
pubmed: 12562691 doi: 10.1093/jac/dkg054
Weir, R. et al. Variability in the content of Indian generic ciprofloxacin eye drops. 1094–1096, https://doi.org/10.1136/bjo.2004.059519 (2005)
pubmed: 16113355 doi: 10.1136/bjo.2004.059519
Frimpong, G. et al. Quality Assessment of Some Essential Children’s Medicines Sold in Licensed Outlets in Ashanti Region, Ghana. 2018 (2018).
Tabernero, P. et al. A random survey of the prevalence of falsified and substandard antibiotics in the Lao PDR. J. Antimicrob. Chemother. 74, 2417–2425 (2019).
pubmed: 31049576 pmcid: 6640311 doi: 10.1093/jac/dkz164
Kim, E. S. & Hooper, D. C. Clinical importance and epidemiology of quinolone resistance. Infect. Chemother. 46, 226–238 (2014).
pubmed: 25566402 pmcid: 4285002 doi: 10.3947/ic.2014.46.4.226
McEwen, S. A. & Fedorka-Cray, P. J. Antimicrobial Use and Resistance in Animals. Clin. Infect. Dis. 34, Supplement (2002).
Acar, J. F. & Goldstein, F. W. Trends in Bacterial Resistance to Fluoroquinolones. Clin. Infect. Dis., 24 (1999).
Dalhoff, A. Global Fluoroquinolone Resistance Epidemiology and Implictions for Clinical Use. Interdiscip. Persepctives Infect. Dsiseases 2012 (2012).
doi: 10.1155/2012/976273
Zayed, A. A. F., Essam, T. M., Hashem, A. G. M. & El-Tayeb, O. M. ‘Supermutators’ found amongst highly levofloxacin-resistant E. coli isolates: A rapid protocol for the detection of mutation sites. Emerg. Microbes Infect. 4 (2015).
Clerch, B., Bravo, J. M. & Llagostera, M. Analysis of the ciprofloxacin-induced mutations in Salmonella typhimurium. Environ. Mol. Mutagen. 27, 110–115 (1996).
pubmed: 8603664 doi: 10.1002/(SICI)1098-2280(1996)27:2<110::AID-EM6>3.0.CO;2-K
Isom, G. L. et al. MCE domain proteins: Conserved inner membrane lipid-binding proteins required for outer membrane homeostasis. Sci. Rep. 7, 1–12 (2017).
doi: 10.1038/s41598-017-09111-6
Matern, Y., Barion, B. & Behrens-Kneip, S. PpiD is a player in the network of periplasmic chaperones in Escherichia coli. BMC Microbiol. 10 (2010).
Mustaev, A. et al. Fluoroquinolone-gyrase-DNA complexes two modes of drug binding. J. Biol. Chem. 289, 12300–12312 (2014).
pubmed: 24497635 pmcid: 4007428 doi: 10.1074/jbc.M113.529164
Hooper, D. C. Emerging mechanisms of fluoroquinolone resistance. Emerg. Infect. Dis. 7, 337–341 (2001).
pubmed: 11294736 pmcid: 2631735 doi: 10.3201/eid0702.010239
Van Der Putten, B. C. L. et al. Quantifying the contribution of four resistance mechanisms to ciprofloxacin MIC in Escherichia coli: A systematic review. J. Antimicrob. Chemother. 74, 298–310 (2019).
pubmed: 30357339 doi: 10.1093/jac/dky417
Corbett, K. D., Shultzaberger, R. K. & Berger, J. M. The C-terminal domain of DNA gyrase A adopts a DNA-bending β-pinwheel fold. Proc. Natl. Acad. Sci. USA 101, 7293–7298 (2004).
pubmed: 15123801 doi: 10.1073/pnas.0401595101
Weigel, L. M., Steward, C. D. & Tenover, F. C. gyrA mutations associated with fluoroquinolone resistance in eight species of Enterobacteriaceae. Antimicrob. Agents Chemother. 42, 2661–2667 (1998).
pubmed: 9756773 pmcid: 105915 doi: 10.1128/AAC.42.10.2661
Willmott, C. J. R. & Maxwell, A. A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. Antimicrob. Agents Chemother. 37, 126–127 (1993).
pubmed: 8381633 pmcid: 187618 doi: 10.1128/AAC.37.1.126
Du, D. et al. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol. 16, 523–539 (2018).
pubmed: 30002505 doi: 10.1038/s41579-018-0048-6
Yu, E. W., Aires, J. R. & Nikaido, H. AcrB multidrug efflux pump of Escherichia coli: Composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J. Bacteriol. 185, 5657–5664 (2003).
pubmed: 13129936 pmcid: 193975 doi: 10.1128/JB.185.19.5657-5664.2003
Okusu, H., Ma, D. & Nikaido, H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178, 306–308 (1996).
pubmed: 8550435 pmcid: 177656 doi: 10.1128/JB.178.1.306-308.1996
Ma, D., Alberti, M., Lynch, C., Nikaido, H. & Hearst, J. E. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol. Microbiol. 19, 101–112 (1996).
pubmed: 8821940 doi: 10.1046/j.1365-2958.1996.357881.x
Gambino, L., Gracheck, S. J. & Miller, P. F. Overexpression of the marA positive regulator is sufficient to confer multiple antibiotic resistance in Escherichia coli. J. Bacteriol. 175, 2888–2894 (1993).
pubmed: 8491710 pmcid: 204606 doi: 10.1128/JB.175.10.2888-2894.1993
Cohen, S. P., Hachler, H. & Levy, S. B. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J. Bacteriol. 175, 1484–1492 (1993).
pubmed: 8383113 pmcid: 193236 doi: 10.1128/JB.175.5.1484-1492.1993
Goldman, J. D., White, D. G. & Levy, S. B. Multiple antibiotic resistance (mar) locus protects Escherichia coli from rapid cell killing by fluoroquinolones. Antimicrob. Agents Chemother. 40, 1266–1269 (1996).
pubmed: 8723480 pmcid: 163305 doi: 10.1128/AAC.40.5.1266
Li, M. et al. Crystal Structure of the Transcriptional Regulator AcrR from Escherichia coli. J. Mol. Biol. 374, 591–603 (2007).
pubmed: 17950313 pmcid: 2254304 doi: 10.1016/j.jmb.2007.09.064
Adler, M., Anjum, M., Andersson, D. I. & Sandegren, L. Combinations of mutations in envZ, ftsI, mrdA, acrB and acrR can cause high-level carbapenem resistance in Escherichia coli. J. Antimicrob. Chemother. 71, 1188–1198 (2016).
pubmed: 26869688 doi: 10.1093/jac/dkv475
Alekshun, M. N., Levy, S. B., Mealy, T. R., Seaton, B. A. & Head, J. F. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat. Struct. Biol. 8, 710–714 (2001).
pubmed: 11473263 doi: 10.1038/90429
Duval, V., McMurry, L. M., Foster, K., Head, J. F. & Levy, S. B. Mutational analysis of the multiple-antibiotic resistance regulator marR reveals a ligand binding pocket at the interface between the dimerization and DNA binding domains. J. Bacteriol. 195, 3341–3351 (2013).
pubmed: 23687277 pmcid: 3719538 doi: 10.1128/JB.02224-12
Alekshun, M. N., Kim, Y. S. & Levy, S. B. Mutational analysis of MarR, the negative regulator of marRAB expression in Escherichia coli, suggests the presence of two regions required for DNA binding. Mol. Microbiol. 35, 1394–1404 (2000).
pubmed: 10760140 doi: 10.1046/j.1365-2958.2000.01802.x
Lindgren, P. K., Karlsson, Å. & Hughes, D. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob. Agents Chemother. 47, 3222–3232 (2003).
doi: 10.1128/AAC.47.10.3222-3232.2003
Kern, W. V., Oethinger, M., Jellen-Ritter, A. S. & Levy, S. B. Non-target gene mutations in the development of fluoroquinolone resistance in Escherichia coli. Antimicrob. Agents Chemother. 44, 814–820 (2000).
pubmed: 10722475 pmcid: 89776 doi: 10.1128/AAC.44.4.814-820.2000
Lázár, V. et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat. Commun. 5 (2014).
Alzrigat, L. P., Huseby, D. L., Brandis, G. & Hughes, D. Fitness cost constrains the spectrum of marR mutations in ciprofloxacin-resistant Escherichia coli. J. Antimicrob. Chemother. 72, 3016–3024 (2017).
doi: 10.1093/jac/dkx270
Shoji, S., Dambacher, C. M., Shajani, Z. & Williamson, J. R. Systemic Deletion of Ribosome Assembly Genes in E. Coli. 413, 751–761 (2013).
Huseby, D. L. et al. Mutation Supply and Relative Fitness Shape the Genotypes of Ciprofloxacin-Resistant Escherichia coli. Mol. Biol. Evol. 34, 1029–1039 (2017).
pubmed: 28087782 pmcid: 5400412
Liu, J., Gefen, O., Ronin, I., Bar-Meir, M. & Balaban, N. Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367, 200–204 (2020).
pubmed: 31919223
Oethinger, M., Podglajen, I., Kern, W. V. & Levy, S. B. Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob. Agents Chemother. 42, 2089–2094 (1998).
pubmed: 9687412 pmcid: 105868 doi: 10.1128/AAC.42.8.2089
Baquero, F. Low-level antibacterial resistance: A gateway to clinical resistance. Drug Resist. Updat. 4, 93–105 (2001).
pubmed: 11512526 doi: 10.1054/drup.2001.0196
Morgan-Linnell, S. K., Boyd, L. B., Steffen, D. & Zechiedrich, L. Mechanisms accounting for fluoroquinolone resistance in Escherichia coli clinical isolates. Antimicrob. Agents Chemother. 53, 235–241 (2009).
pubmed: 18838592 doi: 10.1128/AAC.00665-08
Szili, P. et al. Rapid Evolution of Reduced Susceptibility against a Balanced Dual-Targeting Antibiotic through Stepping-Stone Mutations. 63, 1–15 (2019).
Ahmed, A. M., Miyoshi, S. I., Shinoda, S. & Shimamoto, T. Molecular characterization of a multidrug-resistant strain of enteroinvasive Escherichia coli O164 isolated in Japan. J. Med. Microbiol. 54, 273–278 (2005).
pubmed: 15713611 doi: 10.1099/jmm.0.45908-0
Paniagua-Contreras, G. L. et al. Whole-genome sequence analysis of multidrug-resistant uropathogenic strains of Escherichia coli from Mexico. Infect. Drug Resist. 12, 2363–2377 (2019).
pubmed: 31447566 pmcid: 6682767 doi: 10.2147/IDR.S203661
Komp Lindgren, P., Marcusson, L. L., Sandvang, D. & Hughes, D. Biological Cost of Single and Multiple Norfloxacin Resistance Mutations in. Antimicrob Agents Chemother 49, 2343–2351 (2005).
pubmed: 15917531 doi: 10.1128/AAC.49.6.2343-2351.2005
Suzuki, S., Horinouchi, T. & Furusawa, C. Prediction of antibiotic resistance by gene expression profiles. Nat. Commun. 5, 1–12 (2014).
Chantell, C., Humphries, R. M. & Lewis, J. S. Fluoroquinolone Breakpoints for Enterobacteriaceae and Pseudomonas aeruginosa CLSI rationale document MR02 Oregon Health and Science University. (2019).
Wang, Q. et al. Enhancement of biofilm formation by subinhibitory concentrations of macrolides in icaADBC-positive and -negative clinical isolates of Staphylococcus epidermidis. Antimicrob. Agents Chemother. 54, 2707–2711 (2010).
pubmed: 20231401 pmcid: 2876384 doi: 10.1128/AAC.01565-09
Andrews, J. M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 5–16 (2001).
pubmed: 11420333 doi: 10.1093/jac/48.suppl_1.5
Brewster, J. D. A simple micro-growth assay for enumerating bacteria. J. Microbiol. Methods 53, 77–86 (2003).
pubmed: 12609726 doi: 10.1016/S0167-7012(02)00226-9
Shakeri, H. et al. Establishing statistical equivalence of data from different sampling approaches for assessment of bacterial phenotypic antimicrobial resistance. Appl. Environ. Microbiol. 84, 1–16 (2018).
doi: 10.1128/AEM.02724-17

Auteurs

Carly Ching (C)

Boston University, Department of Biomedical Engineering, Boston, MA, USA.

Muhammad H Zaman (MH)

Boston University, Department of Biomedical Engineering, Boston, MA, USA. zaman@bu.edu.
Howard Hughes Medical Institute, Boston University, Boston, MA, USA. zaman@bu.edu.

Articles similaires

Humans Meals Time Factors Female Adult

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Male Female Aged Middle Aged

A scenario for an evolutionary selection of ageing.

Tristan Roget, Claire Macmurray, Pierre Jolivet et al.
1.00
Aging Selection, Genetic Biological Evolution Animals Fertility

Classifications MeSH