Effects of superfine grinding on asparagus pomace. Part I: Changes on physicochemical and functional properties.


Journal

Journal of food science
ISSN: 1750-3841
Titre abrégé: J Food Sci
Pays: United States
ID NLM: 0014052

Informations de publication

Date de publication:
Jun 2020
Historique:
received: 24 12 2019
revised: 13 04 2020
accepted: 15 04 2020
pubmed: 2 6 2020
medline: 27 10 2020
entrez: 2 6 2020
Statut: ppublish

Résumé

The effects of superfine grinding on the physicochemical and functional properties of asparagus pomace were investigated. The results showed that in terms of the specific surface area, water solubility, soluble dietary fiber content, and ratio of insoluble dietary fiber to soluble dietary fiber, finer samples usually possessed better physicochemical properties compared with coarse samples. However, grinding samples excessively to produce small particle sizes could reduce the water-holding capacity, oil-binding capacity, and swelling capacity. In addition, the extraction of both free and bound phenolics in asparagus pomace powder samples and the samples' absorption of both nitrite ion and glucose showed typical bell-shaped curves, demonstrating that superfine grinding could significantly impact the various properties of asparagus pomace. This study should provide insights into the effect of micronization on the functionalities of fiber-rich food materials. PRACTICAL APPLICATION: This article deals with the effects of superfine grinding on the physicochemical and functional properties of asparagus pomace. The results showed that the properties of asparagus pomace did not always improve gradually with decreasing particle size. With a decrease in granularity, some parameters showed a bell-shaped curve whereas others initially increased and then stabilized, indicating that in actual production, the crushing particle size should be determined according to actual needs or target parameters.

Identifiants

pubmed: 32476136
doi: 10.1111/1750-3841.15168
doi:

Substances chimiques

Dietary Fiber 0
Phenols 0
Plant Extracts 0
Powders 0
Waste Products 0

Types de publication

Evaluation Study Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1827-1833

Subventions

Organisme : the Start-up Funding of Shanghai Institute of Technology

Informations de copyright

© 2020 Institute of Food Technologists®.

Références

Abirami, A., Nagarani, G., & Siddhuraju, P. (2014). Measurement of functional properties and health promoting aspects-glucose retardation index of peel, pulp and peel fiber from Citrus hystrix and Citrus maxima. Bioactive Carbohydrates and Dietary Fibre, 4(1), 16-26.
Anderson, J. W., Baird, P., Davis, R. H., Ferreri, S., Knudtson, M., Koraym, A., & Williams, C. L. (2009). Health benefits of dietary fiber. Nutrition Reviews, 67(4), 188-205.
AOAC (2000). AOAC Official Method of Analysis (17th ed). Gaithersburg: Association of Official Analytical Chemists.
Brewer, L. R., Kubola, J., Siriamornpun, S., Herald, T. J., & Shi, Y. C. (2014). Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chemistry, 152, 483-490.
Chandalia, M., Garg, A., Lutjohann, D., von Bergmann, K., Grundy, S. M., & Brinkley, L. J. (2000). Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. New England Journal of Medicine, 342(19), 1392-1398.
Chen, J., Gao, D., Yang, L., & Gao, Y. (2013). Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Research International, 54(2), 1821-1827.
Chen, Y., Zhang, B., Sun, Y., Zhang, J., Sun, H., & Wei, Z. (2015). Physicochemical properties and adsorption of cholesterol by okra (Abelmoschus esculentus) powder. Food & Function, 6(12), 3728-3736.
Demrkol, O. (2009). Effects of hydrogen peroxide treatment on thiol contents in fresh-cut asparagus (Asparagus officinalis) spears. International Journal of Food Sciences and Nutrition, 60(1), 80-88.
Dodds, J. (2013). Techniques to analyse particle size of food powders. In B. Bhandari, N. Bansal, M. Zhang, & P. Schuck (Eds.), Handbook of food powders (pp. 309-338). Philadelphia, PA: Woodhead Publishing Limited.
Dong, T., Han, R., Yu, J., Zhu, M., Zhang, Y., Gong, Y., & Li, Z. (2019). Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis, L.). Food Chemistry, 271, 18-28.
Du, B., Zhu, F., & Xu, B. (2014). Physicochemical and antioxidant properties of dietary fibers from Qingke (hull-less barley) flour as affected by ultrafine grinding. Bioactive Carbohydrates and Dietary Fibre, 4(2), 170-175.
Fu, M., Qu, Q., Yang, X., & Zhang, X. (2016). Effect of intermittent oven drying on lipid oxidation, fatty acids composition and antioxidant activities of walnut. LWT - Food Science and Technology, 65, 1126-1132.
Fuentes-Alventosa, J. M., Rodríguez-Gutiérrez, G., Jaramillo-Carmona, S., Espejo-Calvo, J. A., Rodríguez-Arcos, R., Fernández-Bolaños, J., & Jiménez-Araujo, A. (2009). Effect of extraction method on chemical composition and functional characteristics of high dietary fibre powders obtained from asparagus by-products. Food Chemistry, 113(2), 665-671.
Fuentes-Alventosa, J. M., Rodriguez, G., Cermeno, P., Jimenez, A., Guillen, R., Fernandez-Bolanos, J., & Rodriguez-Arcos, R. (2007). Identification of flavonoid diglycosides in several genotypes of asparagus from the Huetor-Tajar population variety. Journal of Agricultural and Food Chemistry, 55(24), 10028-10035.
Galisteo, M., Duarte, J., & Zarzuelo, A. (2008). Effects of dietary fibers on disturbances clustered in the metabolic syndrome. The Journal of Nutritional Biochemistry, 19(2), 71-84.
Gouw, V. P., Jung, J., & Zhao, Y. (2017). Functional properties, bioactive compounds, and in vitro gastrointestinal digestion study of dried fruit pomace powders as functional food ingredients. LWT-Food Science and Technology, 80, 136-144.
He, S., Tang, M., Sun, H., Ye, Y., Cao, X., & Wang, J. (2019). Potential of water dropwort (Oenanthe javanica DC.) powder as an ingredient in beverage: Functional, thermal, dissolution and dispersion properties after superfine grinding. Powder Technology, 353, 516-525.
Hu, J., Chen, Y., & Ni, D. (2012). Effect of superfine grinding on quality and antioxidant property of fine green tea powders. LWT-Food Science and Technology, 45(1), 8-12.
Jaramillo-Carmona, S., Rodríguez-Arcos, R., Guillén-Bejarano, R., & Jiménez-Araujo, A. (2019). Hydrothermal treatments enhance the solubility and antioxidant characteristics of dietary fiber from asparagus by-products. Food and Bioproducts Processing, 114, 175-184.
Jaramillo-Carmona, S., Rodriguez-Arcos, R., Jimenez-Araujo, A., Lopez, S., Gil, J., Moreno, R., & Guillen-Bejarano, R. (2017). Saponin profile of wild asparagus species. Journal of Food Science, 82(3), 638-646.
Lecumberri, E., Mateos, R., Izquierdo-Pulido, M., Rupérez, P., Goya, L., & Bravo, L. (2007). Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chemistry, 104(3), 948-954.
Mateos-Aparicio, I., Mateos-Peinado, C., & Rupérez, P. (2010). High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innovative Food Science & Emerging Technologies, 11(3), 445-450.
Meng, Q., Chen, F., Xiao, T., & Zhang, L. (2019). Superfine grinding of Dendrobium officinale: The finer the better? International Journal of Food Science & Technology, 54(6), 2199-2208.
Meng, Q., Fan, H., Chen, F., Xiao, T., & Zhang, L. (2018). Preparation and characterization of Dendrobium officinale powders through superfine grinding. Journal of the Science of Food and Agriculture, 98(5), 1906-1913.
Meng, Q., Fan, H., Xu, D., Aboshora, W., Tang, Y., Xiao, T., & Zhang, L. (2017). Superfine grinding improves the bioaccessibility and antioxidant properties of Dendrobium officinale powders. International Journal of Food Science & Technology, 52(6), 1440-1451.
Ming, J., Chen, L., Hong, H., & Li, J. (2015). Effect of superfine grinding on the physico-chemical, morphological and thermogravimetric properties of Lentinus edodes mushroom powders. Journal of the Science of Food and Agriculture, 95(12), 2431-2437.
Møller, M., Dahl, R., & Bøckman, O. (1988). A possible role of the dietary fibre product, wheat bran, as a nitrite scavenger. Food and Chemical Toxicology, 26(10), 841-845.
Ou, S., Kwok, K., Li, Y., & Fu, L. (2001). In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. Journal of Agricultural and Food Chemistry, 49(2), 1026-1029.
Phat, C., Li, H., Lee, D.-U., Moon, B., Yoo, Y.-B., & Lee, C. (2015). Characterization of Hericium erinaceum powders prepared by conventional roll milling and jet milling. Journal of Food Engineering, 145, 19-24.
Rajkhowa, R., Wang, L., & Wang, X. (2008). Ultra-fine silk powder preparation through rotary and ball milling. Powder Technology, 185(1), 87-95.
Rodríguez, R., Jiménez, A., Fernández-Bolaños, J., Guillén, R., & Heredia, A. (2006). Dietary fibre from vegetable products as source of functional ingredients. Trends in Food Science & Technology, 17(1), 3-15.
Sangnark, A., & Noomhorm, A. (2003). Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chemistry, 80(2), 221-229.
Tao, B., Ye, F., Li, H., Hu, Q., Xue, S., & Zhao, G. (2014). Phenolic profile and in vitro antioxidant capacity of insoluble dietary fiber powders from citrus (Citrus junos Sieb. ex Tanaka) pomace as affected by ultrafine grinding. Journal of Agricultural and Food Chemistry, 62(29), 7166-7173.
Vasanthan, T., Gaosong, J., Yeung, J., & Li, J. (2002). Dietary fiber profile of barley flour as affected by extrusion cooking. Food Chemistry, 77(1), 35-40.
Vitaglione, P., Napolitano, A., & Fogliano, V. (2008). Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends in Food Science & Technology, 19(9), 451-463.
Wang, J., Wang, C., Li, W., Pan, Y., Yuan, G., & Chen, H. (2016). Ball milling improves extractability and antioxidant properties of the active constituents of mushroom Inonotus obliquus powders. International Journal of Food Science & Technology, 51(10), 2193-2200.
Xiao, W., Zhang, Y., Fan, C., & Han, L. (2017). A method for producing superfine black tea powder with enhanced infusion and dispersion property. Food Chemistry, 214,242-247.
Ye, F., Tao, B., Liu, J., Zou, Y., & Zhao, G. (2016). Effect of micronization on the physicochemical properties of insoluble dietary fiber from citrus (Citrus junos Sieb. ex Tanaka) pomace. Food Science and Technology International, 22(3), 246-255.
Zhang, H., Zhu, L., Luo, L., Wang, N., Chingin, K., Guo, X., & Chen, H. (2013). Direct assessment of phytochemicals inherent in plant tissues using extractive electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 61(45), 10691-10698.
Zhang, Z., Song, H., Peng, Z., Luo, Q., Ming, J., & Zhao, G. (2012). Characterization of stipe and cap powders of mushroom (Lentinus edodes) prepared by different grinding methods. Journal of Food Engineering, 109(3), 406-413.
Zhao, G., Zhang, R., Dong, L., Huang, F., Tang, X., Wei, Z., & Zhang, M. (2018). Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT-Food Science and Technology, 87, 450-456.
Zhao, X., Yang, Z., Gai, G., & Yang, Y. (2009). Effect of superfine grinding on properties of ginger powder. Journal of Food Engineering, 91(2), 217-222.
Zhao, X., Zhu, H., Zhang, G., & Tang, W. (2015). Effect of superfine grinding on the physicochemical properties and antioxidant activity of red grape pomace powders. Powder Technology, 286, 838-844.
Zhao, Y., Wu, X., Wang, Y., Jing, R., & Yue, F. (2017). Comparing physicochemical properties of hawthorn superfine and fine powders. Journal of Food Processing and Preservation, 41(2), e12834.
Zhong, C., Zu, Y., Zhao, X., Li, Y., Ge, Y., Wu, W., & Guo, D. (2016). Effect of superfine grinding on physicochemical and antioxidant properties of pomegranate peel. International Journal of Food Science & Technology, 51(1), 212-221.
Zhu, F., Du, B., & Xu, B. (2015). Superfine grinding improves functional properties and antioxidant capacities of bran dietary fibre from Qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China. Journal of Cereal Science, 65, 43-47.
Zhu, K., Huang, S., Peng, W., Qian, H., & Zhou, H. (2010). Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Research International, 43(4), 943-948.

Auteurs

Wenjie Gao (W)

Department of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P.R. China.

Feng Chen (F)

Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, College of Food Science, Beijing Technology and Business University, Beijing, 100048, P. R. China.
Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, 29634, USA.

Lianfu Zhang (L)

School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China.

Qingran Meng (Q)

Engineering Research Center of Perfume & Aroma and Cosmetics of Ministry of Education, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P.R. China.

Articles similaires

Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Humans Citrus Female Male Aged
Calcium Carbonate Sand Powders Construction Materials Materials Testing

Classifications MeSH