Synergistic antioxidant effects of petunidin and lycopene in H9c2 cells submitted to hydrogen peroxide: Role of Akt/Nrf2 pathway.
Animals
Anthocyanins
/ pharmacology
Antioxidants
/ pharmacology
Carotenoids
/ pharmacology
Cell Survival
/ drug effects
Drug Synergism
Glutathione Peroxidase
/ metabolism
Hydrogen Peroxide
/ toxicity
Lycopene
/ pharmacology
Myofibroblasts
/ drug effects
NAD(P)H Dehydrogenase (Quinone)
/ metabolism
NF-E2-Related Factor 2
/ genetics
Oxidative Stress
/ drug effects
Proto-Oncogene Proteins c-akt
/ genetics
Rats
Signal Transduction
/ drug effects
Superoxide Dismutase
/ metabolism
antioxidant
cardiovascular disease
interaction
lycopene
petunidin
synergy
Journal
Journal of food science
ISSN: 1750-3841
Titre abrégé: J Food Sci
Pays: United States
ID NLM: 0014052
Informations de publication
Date de publication:
Jun 2020
Jun 2020
Historique:
received:
28
12
2019
revised:
25
03
2020
accepted:
02
04
2020
pubmed:
2
6
2020
medline:
6
10
2020
entrez:
2
6
2020
Statut:
ppublish
Résumé
Phenolics and carotenoids coexist in fruits and vegetables and could possess interaction effects after consumption. The present study aims to elucidate the possible mechanisms of the antioxidant interactions between anthocyanins and carotenoids using petunidin and lycopene as examples in hydrogen peroxide (H
Identifiants
pubmed: 32476138
doi: 10.1111/1750-3841.15153
doi:
Substances chimiques
Anthocyanins
0
Antioxidants
0
NF-E2-Related Factor 2
0
Carotenoids
36-88-4
Hydrogen Peroxide
BBX060AN9V
Glutathione Peroxidase
EC 1.11.1.9
Superoxide Dismutase
EC 1.15.1.1
NAD(P)H Dehydrogenase (Quinone)
EC 1.6.5.2
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
Lycopene
SB0N2N0WV6
petunidin
WRK4Q8K2D8
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1752-1763Subventions
Organisme : National Natural Science Foundation of China
ID : 31972970
Organisme : National Natural Science Foundation of China
ID : 31760432
Informations de copyright
© 2020 Institute of Food Technologists®.
Références
Alissa, E. M., & Ferns, G. A. (2017). Dietary fruits and vegetables and cardiovascular diseases risk. Critical Reviews in Food Science and Nutrition, 57(9), 1950-1962. https://doi.org/10.1080/10408398.2015.1040487
Bai, Y., Wang, X., Zhao, S., Ma, C., Cui, J., & Zheng, Y. (2015). Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxidative Medicine and Cellular Longevity, 2015, 1-13. https://doi.org/10.1155/2015/407580
Brouard, S., Otterbein, L. E., Anrather, J., Tobiasch, E., Bach, F. H., Choi, A. M. K., & Soares, M. P. (2000). Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. The Journal of Experimental Medicine, 192(7), 1015-1026. https://doi.org/10.1084/jem.192.7.1015
Chen, B., Ma, Y., Li, H., Chen, X., Zhang, C., Wang, H., & Deng, Z. (2019). The antioxidant activity and active sites of delphinidin and petunidin measured by DFT, in vitro chemical-based and cell-based assays. Journal of Food Biochemistry, 43(9), 1-11. https://doi.org/10.1111/jfbc.12968
Chen, C., Milbury, P. E., Lapsley, K., & Blumberg, J. B. (2005). Flavonoids from almond skins are bioavailable and act synergistically with vitamins C and E to enhance hamster and human LDL resistance to oxidation. Biochemical and Molecular Actions of Nutrients, 135(6), 1366-1373. https://doi.org/10.1093/jn/135.6.1366
Cimino, F., Speciale, A., Anwar, S., Canali, R., Ricciardi, E., Virgili, F., … Saija, A. (2013). Anthocyanins protect human endothelial cells from mild hyperoxia damage through modulation of Nrf2 pathway. Genes & Nutrition, 8(4), 391-399. https://doi.org/10.1007/s12263-012-0324-4
Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239-247. https://doi.org/10.1038/35041687
Hine, C. M., & Mitchell, J. R. (2012). NRF2 and the phase II response in acute stress resistance induced by dietary restriction. Journal of Clinical & Experimental Pathology, S4(4). https://doi.org/10.4172/2161-0681.S4-004
Hu, T., Wei, G., Xi, M., Yan, J., Wu, X., Wang, Y., … Wen, A. (2016). Synergistic cardioprotective effects of Danshensu and hydroxysafflor yellow A against myocardial ischemia-reperfusion injury are mediated through the Akt/Nrf2/HO-1 pathway. International Journal of Molecular Medicine, 38(1), 83-94. https://doi.org/10.3892/ijmm.2016.2584
Ichihara, S. (2013). The pathological roles of environmental and redox stresses in cardiovascular diseases. Environmental Health and Preventive Medicine, 18(3), 177-184. https://doi.org/10.1007/s12199-012-0326-2
Jiang, Z., Chen, C., Wang, J., Xie, W., Wang, M., Li, X., & Zhang, X. (2016). Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense. Journal of Natural Medicines, 70(1), 45-53. https://doi.org/10.1007/s11418-015-0935-3
Jiang, H., Li, H. Y., Yu, C. W., Yang, T. T., Hu, J. N., Liu, R., & Deng, Z. Y. (2015). The evaluation of antioxidant interactions among 4 common vegetables using isobolographic analysis. Journal of Food Science, 80(6), 1162-1169. https://doi.org/10.1111/1750-3841.12896
Kaspar, J. W., Niture, S. K., & Jaiswal, A. K. (2009). Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biology & Medicine, 47(9), 1304-1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035
Kovac, S., Angelova, P. R., Holmstrom, K. M., Zhang, Y., Dinkova-Kostova, A. T., & Abramov, A. Y. (2015). Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochimica et Biophysica Acta, 1850(4), 794-801. https://doi.org/10.1016/j.bbagen.2014.11.021
Kropat, C., Mueller, D., Boettler, U., Zimmermann, K., Heiss, E. H., Dirsch, V. M., … Marko, D. (2013). Modulation of Nrf2-dependent gene transcription by bilberry anthocyanins in vivo. Molecular Nutrition & Food Research, 57(3), 545-550. https://doi.org/10.1002/mnfr.201200504
Kruger, M. J., Davies, N., Myburgh, K. H., & Lecour, S. (2014). Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Research International, 59, 41-52. https://doi.org/10.1016/j.foodres.2014.01.046
Lapidot, T., Harel, S., Akiri, B., Granit, R., & Kanner, J. (1999). pH-dependent forms of red wine anthocyanins as antioxidants. Journal of Agricultural Food Chemistry, 47, 67-70. Retrieved from https://doi.org/10.1021/jf980704g
Lee, S. E., Yang, H., Jeong, S. I., Jin, Y. H., Park, C. S., & Park, Y. S. (2012). Induction of heme oxygenase-1 inhibits cell death in crotonaldehyde-stimulated HepG2 cells via the PKC-delta-p38-Nrf2 pathway. PLoS One, 7(7), 1-10. https://doi.org/10.1371/journal.pone.0041676
Lei, X., Lei, L., Zhang, Z., & Cheng, Y. (2016). Neuroprotective effects of lycopene pretreatment on transient global cerebral ischemiareperfusion in rats: The role of the Nrf2/HO1 signaling pathway. Molecular Medicine Reports, 13(1), 412-418. https://doi.org/10.3892/mmr.2015.4534
Li, H., Deng, Z., Liu, R., Loewen, S., & Tsao, R. (2013). Carotenoid compositions of coloured tomato cultivars and contribution to antioxidant activities and protection against H(2)O(2)-induced cell death in H9c2. Food Chemistry, 136(2), 878-888. https://doi.org/10.1016/j.foodchem.2012.08.020
Lian, F., & Wang, X.-D. (2008). Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Intenational Journal Cancer, 123(6), 1262-1268. https://doi.org/10.1002/ijc.23696
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
Miguel, F., Augusto, A. C., & Gurgueira, S. A. (2009). Effect of acute vs chronic H2O2-induced oxidative stress on antioxidant enzyme activities. Free Radical Research, 43(4), 340-347. https://doi.org/10.1080/10715760902751894
Muller, L., Caris-Veyrat, C., Lowe, G., & Bohm, V. (2016). Lycopene and its antioxidant role in the prevention of cardiovascular diseases - A critical review. Critical Reviews in Food Science and Nutrition, 56(11), 1868-1879. https://doi.org/10.1080/10408398.2013.801827
Pan, Y., Deng, Z. Y., Zheng, S. L., Chen, X., Zhang, B., & Li, H. (2018). Daily dietary antioxidant interactions are due to not only the quantity but also the ratios of hydrophilic and lipophilic phytochemicals. Journal of Agricultural Food Chemistry, 66(34), 9107-9120. https://doi.org/10.1021/acs.jafc.8b03412
Pan, Y., Li, H., Zheng, S., Zhang, B., & Deng, Z. Y. (2018). Implication of the significance of dietary compatibility: Based on the antioxidant and anti-inflammatory interactions with different ratios of hydrophilic and lipophilic antioxidants among four daily agricultural crops. Journal of Agricultural Food Chemistry, 66(28), 7461-7474. https://doi.org/10.1021/acs.jafc.8b01690
Phan, M. A. T., Bucknall, M. P., & Arcot, J. (2019). Effects on intestinal cellular bioaccessibility of carotenoids and cellular biological activity as a consequence of co-ingestion of anthocyanin- and carotenoid-rich vegetables. Food Chemistry, 286, 678-685. https://doi.org/10.1016/j.foodchem.2019.02.046
Schieber, M. S., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), 453-462. https://doi.org/10.1016/j.cub.2014.03.034
Song, L. L., Liang, R., Li, D. D., Xing, Y. D., Han, R. M., Zhang, J. P., & Skibsted, L. H. (2011). Beta-carotene radical cation addition to green tea polyphenols. Mechanism of antioxidant antagonism in peroxidizing liposomes. Journal of Agricultural Food Chemistry, 59(23), 12643-12651. https://doi.org/10.1021/jf2030456
Wallace, T. C. (2011). Anthocyanins in cardiovascular disease. Advance in Nutrition, 2(1), 1-7. https://doi.org/10.3945/an.110.000042
Wang, S., Meckling, K. A., Marcone, M. F., Kakuda, Y., & Tsao, R. (2011). Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. Journal of Agricultural Food Chemistry, 59(3), 960-968. https://doi.org/10.1021/jf1040977
Wang, S., Wang, D., & Liu, Z. (2015). Synergistic, additive and antagonistic effects of Potentilla fruticosa combined with EGb761 on antioxidant capacities and the possible mechanism. Industrial Crops and Products, 67, 227-238. https://doi.org/10.1016/j.indcrop.2015.01.025
Wang, S., & Zhu, F. (2017). Dietary antioxidant synergy in chemical and biological systems. Critical Reviews in Food Science and Nutrition, 57(11), 2343-2357. https://doi.org/10.1080/10408398.2015.1046546
Wolfe, K. L., & Liu, R. H. (2007). Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Journal of Agricultural Food Chemistry, 55(22), 8896-8907. https://doi.org/10.1021/jf0715166
Xu, X., Li, H., Hou, X., Li, D., He, S., Wan, C., … Xu, J. (2015). Punicalagin induces Nrf2/HO-1 expression via upregulation of PI3K/AKT pathway and inhibits LPS-induced oxidative stress in RAW264.7 macrophages. Mediators Inflammation, 2015, 1-11. https://doi.org/10.1155/2015/380218
Zhang, B., Chen, Y., Shen, Q., Liu, G., Ye, J., Sun, G., & Sun, X. (2016). Myricitrin attenuates high glucose-induced apoptosis through activating Akt-Nrf2 signaling in H9c2 cardiomyocytes. Molecules, 21(7), 1-13. https://doi.org/10.3390/molecules21070880
Zhang, H., Hassan, Y. I., Renaud, J., Liu, R., Yang, C., Sun, Y., & Tsao, R. (2017). Bioaccessibility, bioavailability, and anti-inflammatory effects of anthocyanins from purple root vegetables using mono- and co-culture cell models. Molecular Nutrition & Food Research, 61(10), 1-15. https://doi.org/10.1002/mnfr.201600928
Zhang, H., Liu, R., & Tsao, R. (2016). Anthocyanin-rich phenolic extracts of purple root vegetables inhibit pro-inflammatory cytokines induced by H2O2 and enhance antioxidant enzyme activities in Caco-2 cells. Journal of Functional Foods, 22, 363-375. https://doi.org/10.1016/j.jff.2016.01.004
Zhang, H., & Tsao, R. (2016c). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8, 33-42. https://doi.org/10.1016/j.cofs.2016.02.002
Zheng, L., Wei, H., Yu, H., Xing, Q., Zou, Y., Zhou, Y., & Peng, J. (2018). Fish skin gelatin hydrolysate production by ginger powder induces glutathione synthesis to prevent hydrogen peroxide induced intestinal oxidative stress via the pept1-p62-Nrf2 cascade. Journal of Agricultural Food Chemistry, 66(44), 11601-11611. https://doi.org/10.1021/acs.jafc.8b02840