Predicting RNA SHAPE scores with deep learning.


Journal

RNA biology
ISSN: 1555-8584
Titre abrégé: RNA Biol
Pays: United States
ID NLM: 101235328

Informations de publication

Date de publication:
09 2020
Historique:
pubmed: 2 6 2020
medline: 8 7 2021
entrez: 2 6 2020
Statut: ppublish

Résumé

Secondary structure prediction approaches rely typically on models of equilibrium free energies that are themselves based on in vitro physical chemistry. Recent transcriptome-wide experiments of in vivo RNA structure based on SHAPE-MaP experiments provide important information that may make it possible to extend current in vitro-based RNA folding models in order to improve the accuracy of computational RNA folding simulations with respect to the experimentally measured in vivo RNA secondary structure. Here we present a machine learning approach that utilizes RNA secondary structure prediction results and nucleotide sequence in order to predict in vivo SHAPE scores. We show that this approach has a higher Pearson correlation coefficient with experimental SHAPE scores than thermodynamic folding. This could be an important step towards augmenting experimental results with computational predictions and help with RNA secondary structure predictions that inherently take in-vivo folding properties into account.

Identifiants

pubmed: 32476596
doi: 10.1080/15476286.2020.1760534
pmc: PMC7549691
doi:

Substances chimiques

Codon, Initiator 0
RNA 63231-63-0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1324-1330

Subventions

Organisme : CCR NIH HHS
ID : HHSN261200800001C
Pays : United States
Organisme : NCI NIH HHS
ID : HHSN261200800001E
Pays : United States

Références

Bioinformatics. 2019 Jul 15;35(14):i354-i359
pubmed: 31510707
Algorithms Mol Biol. 2011 Nov 24;6:26
pubmed: 22115189
Nat Protoc. 2006;1(3):1610-6
pubmed: 17406453
Nature. 2014 Jan 30;505(7485):696-700
pubmed: 24270811
Nat Methods. 2014 Sep;11(9):959-65
pubmed: 25028896
Cell. 2018 Mar 22;173(1):181-195.e18
pubmed: 29551268
Nature. 2014 Jan 30;505(7485):701-5
pubmed: 24336214
Methods. 2010 Oct;52(2):150-8
pubmed: 20554050
Annu Rev Microbiol. 2005;59:487-517
pubmed: 16153177
RNA. 2011 Sep;17(9):1688-96
pubmed: 21752927
Q Rev Biophys. 2016 Jan;49:e10
pubmed: 27658939

Auteurs

Noah Bliss (N)

RNA Biology Laboratory, National Cancer Institute , Frederick, MD, USA.

Eckart Bindewald (E)

Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Bruce A Shapiro (BA)

RNA Biology Laboratory, National Cancer Institute , Frederick, MD, USA.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
alpha-Synuclein Humans Animals Mice Lewy Body Disease
Humans Colorectal Neoplasms Biomarkers, Tumor Prognosis Gene Expression Regulation, Neoplastic

Unsupervised learning for real-time and continuous gait phase detection.

Dollaporn Anopas, Yodchanan Wongsawat, Jetsada Arnin
1.00
Humans Gait Neural Networks, Computer Unsupervised Machine Learning Walking

Classifications MeSH