Design of Dual Inhibitors of Histone Deacetylase 6 and Heat Shock Protein 90.
Journal
ACS omega
ISSN: 2470-1343
Titre abrégé: ACS Omega
Pays: United States
ID NLM: 101691658
Informations de publication
Date de publication:
26 May 2020
26 May 2020
Historique:
received:
07
02
2020
accepted:
24
03
2020
entrez:
2
6
2020
pubmed:
2
6
2020
medline:
2
6
2020
Statut:
epublish
Résumé
Histone deacetylase 6 (HDAC6) and heat shock protein 90 (Hsp90) are widely investigated anticancer drug targets. Importantly, several lines of evidence indicate that their regulation and activity are intimately linked, and that their combined inhibition may lead to impressive therapeutic benefits. In this study, we developed and applied an integrated computational strategy to design dual inhibitors of HDAC6 and Hsp90. Although the two targets share very little homology, an integrated ligand-based and structure-based virtual screening approach indicated a subset of compounds possessing the key structural requirements for binding at both targets.
Identifiants
pubmed: 32478236
doi: 10.1021/acsomega.0c00559
pmc: PMC7254527
doi:
Types de publication
Journal Article
Langues
eng
Pagination
11473-11480Informations de copyright
Copyright © 2020 American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Chonnam Med J. 2016 Jan;52(1):1-11
pubmed: 26865995
Nucl Recept Signal. 2005;3:e004
pubmed: 16604172
J Chem Inf Comput Sci. 2002 Nov-Dec;42(6):1273-80
pubmed: 12444722
Nat Rev Mol Cell Biol. 2017 Jun;18(6):345-360
pubmed: 28429788
J Biomed Biotechnol. 2011;2011:875824
pubmed: 21076528
Drug Discov Today. 2018 Nov;23(11):1889-1896
pubmed: 30099123
Trends Cell Biol. 2005 Nov;15(11):565-7
pubmed: 16199163
Blood. 2005 Feb 15;105(4):1768-76
pubmed: 15514006
Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7
pubmed: 21948594
Front Oncol. 2018 Mar 29;8:92
pubmed: 29651407
Nat Chem Biol. 2013 May;9(5):319-25
pubmed: 23524983
ChemMedChem. 2009 Sep;4(9):1399-409
pubmed: 19685544
F1000Res. 2016 Apr 06;5:
pubmed: 27127620
Chem Biol Drug Des. 2007 Jul;70(1):1-12
pubmed: 17630989
J Cell Biochem. 2009 Jul 1;107(4):600-8
pubmed: 19459166
J Biol Chem. 2005 Jul 22;280(29):26729-34
pubmed: 15937340
Chem Biol. 2004 Jun;11(6):775-85
pubmed: 15217611
Mol Cell. 2005 May 27;18(5):601-7
pubmed: 15916966
Trends Pharmacol Sci. 2017 Mar;38(3):226-256
pubmed: 28012700
Cancer Res. 2003 Dec 1;63(23):8420-7
pubmed: 14679005
Int J Mol Sci. 2019 Sep 04;20(18):
pubmed: 31487867
Nat Chem Biol. 2016 Sep;12(9):741-7
pubmed: 27454933
Nucleic Acids Res. 2000 Jan 1;28(1):235-42
pubmed: 10592235
J Med Chem. 2004 Mar 25;47(7):1739-49
pubmed: 15027865
Sarcoma. 2009;2009:794901
pubmed: 19325926
Biochem Biophys Res Commun. 2007 May 18;356(4):998-1003
pubmed: 17397803
Eur J Med Chem. 2018 Apr 25;150:667-677
pubmed: 29567459
Eur J Haematol. 2010 Apr;84(4):337-44
pubmed: 20028416
Eur J Med Chem. 2020 Jan 1;185:111725
pubmed: 31655430
Cancer Res. 2003 Aug 15;63(16):5126-35
pubmed: 12941844
J Biol Chem. 2005 Oct 7;280(40):33792-9
pubmed: 16087666
Eur J Haematol. 2012 May;88(5):406-15
pubmed: 22309072
Mol Pharmacol. 2005 Apr;67(4):1166-76
pubmed: 15625278
Blood. 2008 Sep 1;112(5):1886-93
pubmed: 18591380
Drug Discov Today. 2015 Jun;20(6):718-35
pubmed: 25687212
Nucleic Acids Res. 2019 Jul 2;47(W1):W636-W641
pubmed: 30976793
J Med Chem. 2014 Oct 9;57(19):7874-87
pubmed: 24946140
Mol Oncol. 2017 May;11(5):567-583
pubmed: 28306192
EMBO Rep. 2013 Dec;14(12):1039-42
pubmed: 24232184
J Chem Inf Model. 2010 Apr 26;50(4):572-84
pubmed: 20235588
J Chem Inf Model. 2010 May 24;50(5):742-54
pubmed: 20426451
J Chem Inf Model. 2015 Nov 23;55(11):2324-37
pubmed: 26479676
Curr Urol Rep. 2010 May;11(3):152-8
pubmed: 20425621
Ann Oncol. 2010 Jan;21(1):109-13
pubmed: 19608618
Future Med Chem. 2016 Oct;8(15):1887-1897
pubmed: 27629935