Differential Effects of Post-Weaning Diet and Maternal Obesity on Mouse Liver and Brain Metabolomes.
3-Hydroxybutyric Acid
/ metabolism
Animals
Anserine
/ metabolism
Brain
/ metabolism
Deoxyglucose
/ metabolism
Diet
Energy Metabolism
Female
Homeostasis
Liver
/ metabolism
Lysine
/ analogs & derivatives
Male
Maternal Nutritional Physiological Phenomena
/ physiology
Maternal-Fetal Exchange
/ physiology
Metabolome
Mice, Inbred C57BL
Obesity, Maternal
/ metabolism
Pregnancy
Prenatal Exposure Delayed Effects
/ metabolism
Weaning
DOHaD
high-fat diet
liver
metabolomics
obesity
weight loss
Journal
Nutrients
ISSN: 2072-6643
Titre abrégé: Nutrients
Pays: Switzerland
ID NLM: 101521595
Informations de publication
Date de publication:
28 May 2020
28 May 2020
Historique:
received:
17
04
2020
revised:
20
05
2020
accepted:
24
05
2020
entrez:
3
6
2020
pubmed:
3
6
2020
medline:
27
2
2021
Statut:
epublish
Résumé
Nutritional changes during developmental windows are of particular concern in offspring metabolic disease. Questions are emerging concerning the role of maternal weight changes before conception, particularly for weight loss, in the development of diet-related disorders. Understanding the physiological pathways affected by the maternal trajectories in the offspring is therefore essential, but a broad overview is still lacking. We recently reported both metabolic and behavioral negative outcomes in offspring born to obese or weight-loss mothers and fed a control of high-fat diet, suggesting long-term modeling of metabolic pathways needing to be further characterized. Using non-targeted LC-HRMS, we investigated the impact of maternal and post-weaning metabolic status on the adult male offspring's metabolome in three tissues involved in energy homeostasis: liver, hypothalamus and olfactory bulb. We showed that post-weaning diet interfered with the abundance of several metabolites, including 1,5-anhydroglucitol, saccharopine and βhydroxybutyrate, differential in the three tissues. Moreover, maternal diet had a unique impact on the abundance of two metabolites in the liver. Particularly, anserine abundance, lowered by maternal obesity, was normalized by a preconceptional weight loss, whatever the post-weaning diet. This study is the first to identify a programming long-term effect of maternal preconception obesity on the offspring metabolome.
Identifiants
pubmed: 32481497
pii: nu12061572
doi: 10.3390/nu12061572
pmc: PMC7352523
pii:
doi:
Substances chimiques
1,5-anhydroglucitol
54BB3B7XMZ
Deoxyglucose
9G2MP84A8W
Anserine
HDQ4N37UGV
Lysine
K3Z4F929H6
3-Hydroxybutyric Acid
TZP1275679
saccharopine
WBQ73O8W32
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Fondation Cœur et Artères
ID : FCA 13T1
Organisme : INRAE
ID : AlimH "omics" program 2016
Organisme : French Ministère de la Recherche
ID : Contrat doctoral
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Eur J Nutr. 2019 Dec;58(8):3059-3068
pubmed: 30406389
Mol Metab. 2018 Sep;15:8-19
pubmed: 29773464
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W71-7
pubmed: 20457745
Physiol Rev. 2014 Oct;94(4):1027-76
pubmed: 25287859
Nutrients. 2017 Jun 22;9(7):
pubmed: 28640216
J Agric Food Chem. 2009 Mar 11;57(5):1781-5
pubmed: 19256552
J Neurosci. 2007 Apr 4;27(14):3618-25
pubmed: 17409226
J Agric Food Chem. 2017 Jun 21;65(24):4961-4969
pubmed: 28561587
Am J Obstet Gynecol. 2009 Apr;200(4):395.e1-9
pubmed: 19200933
Mol Metab. 2018 Dec;18:25-41
pubmed: 30337225
Food Nutr Res. 2013;57:
pubmed: 23503117
Brain Res. 2011 Jul 15;1401:95-103
pubmed: 21652033
Food Chem. 2014 Oct 1;160:148-56
pubmed: 24799221
J Proteome Res. 2017 Apr 7;16(4):1515-1525
pubmed: 28314371
Anal Chem. 2006 Feb 1;78(3):779-87
pubmed: 16448051
PLoS One. 2017 Mar 27;12(3):e0174307
pubmed: 28346523
Obesity (Silver Spring). 2014 Jul;22(7):1685-93
pubmed: 24719305
J Proteome Res. 2015 Aug 7;14(8):3322-35
pubmed: 26088811
Nucleic Acids Res. 2016 Jan 4;44(D1):D1214-9
pubmed: 26467479
Chem Senses. 2015 Oct;40(8):537-56
pubmed: 26209545
Prog Lipid Res. 2015 Jul;59:54-66
pubmed: 25920364
J Neurosci. 2008 Nov 12;28(46):12107-19
pubmed: 19005075
Neurochem Int. 2013 Nov;63(5):450-7
pubmed: 23974047
J Physiol. 2015 Jul 15;593(14):3181-97
pubmed: 25922055
Chem Senses. 2012 Nov;37(9):769-97
pubmed: 22832483
Endocrine. 2013 Feb;43(1):33-40
pubmed: 22847316
Horm Behav. 2015 Nov;76:153-61
pubmed: 25913366
Front Physiol. 2017 Jul 12;8:468
pubmed: 28747887
Lancet Diabetes Endocrinol. 2017 Jan;5(1):65-76
pubmed: 27743974
Obesity (Silver Spring). 2017 Jun;25(6):1069-1076
pubmed: 28452429
Obes Rev. 2015 Jun;16(6):488-97
pubmed: 25828602
Hepatol Int. 2018 Feb;12(Suppl 1):135-147
pubmed: 28770516
Mol Metab. 2017 Nov;6(11):1480-1492
pubmed: 29107294
FEBS Lett. 2001 Jan 12;488(1-2):34-8
pubmed: 11163791
J Proteome Res. 2011 Jul 1;10(7):3292-302
pubmed: 21608999
Exp Cell Res. 2018 Jul 15;368(2):159-166
pubmed: 29698637
Am J Obstet Gynecol. 2015 Feb;212(2):227.e1-7
pubmed: 25132463
Bioinformatics. 2015 May 1;31(9):1493-5
pubmed: 25527831
Nutr Neurosci. 2019 Dec;22(12):877-893
pubmed: 29697017
Endocrinology. 2014 Jul;155(7):2566-77
pubmed: 24773340
Nucleic Acids Res. 2018 Jan 4;46(D1):D608-D617
pubmed: 29140435
Cell Rep. 2017 Dec 12;21(11):3317-3328
pubmed: 29241556
Diabetes. 1986 Feb;35(2):204-9
pubmed: 2935437
Cell. 2014 Jan 30;156(3):495-509
pubmed: 24462248
Eur J Pharmacol. 2011 Feb 25;653(1-3):82-8
pubmed: 21167151
J Proteome Res. 2018 Mar 2;17(3):1077-1090
pubmed: 29373032
Ann Nutr Metab. 2017;70(3):201-209
pubmed: 28301839
Int J Biochem Cell Biol. 2017 Dec;93:89-101
pubmed: 28710041
J Hepatol. 2016 Dec;65(6):1120-1130
pubmed: 27520878
Nucleic Acids Res. 2018 Jul 2;46(W1):W486-W494
pubmed: 29762782
Metab Brain Dis. 2019 Dec;34(6):1607-1613
pubmed: 31410775
Nutrients. 2016 May 27;8(6):
pubmed: 27240400
Nucleic Acids Res. 2014 Jan;42(Database issue):D478-84
pubmed: 24203708
Behav Brain Res. 2007 Nov 22;184(1):1-10
pubmed: 17686536
J Clin Invest. 2009 Feb;119(2):323-35
pubmed: 19147984
J Dev Orig Health Dis. 2015 Apr;6(2):65-78
pubmed: 25631626
Mol Nutr Food Res. 2018 Feb;62(4):
pubmed: 29193674
Cell Signal. 2016 Aug;28(8):917-23
pubmed: 27083590
Biomed Res Int. 2014;2014:640291
pubmed: 25544943
Neuron. 2010 Oct 6;68(1):99-112
pubmed: 20920794
Transl Psychiatry. 2016 Oct 4;6(10):e911
pubmed: 27701408
Psychoneuroendocrinology. 2019 Jun;104:249-258
pubmed: 30904822
Am J Physiol Regul Integr Comp Physiol. 2015 May 15;308(10):R872-8
pubmed: 25786485
J Obstet Gynaecol. 2010 Feb;30(2):101-6
pubmed: 20143963
Nutrients. 2019 Apr 26;11(5):
pubmed: 31035463
Biochim Biophys Acta. 2014 Mar;1842(3):507-519
pubmed: 23872578
J Physiol. 2018 Oct;596(19):4611-4628
pubmed: 29972240
Nucleic Acids Res. 2000 Jan 1;28(1):27-30
pubmed: 10592173
Am J Physiol Endocrinol Metab. 2016 Jan 15;310(2):E103-15
pubmed: 26530151
Ann Nutr Metab. 2016;69 Suppl 1:7-21
pubmed: 27842299
Clin Epigenetics. 2016 Feb 27;8:22
pubmed: 26925174
Reprod Biol Endocrinol. 2014 Aug 18;12:80
pubmed: 25135621
J Inherit Metab Dis. 2019 Jul;42(4):620-628
pubmed: 30767241
Mol Endocrinol. 2010 Mar;24(3):657-66
pubmed: 20150186