Functional characteristics of Svl3 and Pam1 that are required for proper cell wall formation in yeast cells.


Journal

Yeast (Chichester, England)
ISSN: 1097-0061
Titre abrégé: Yeast
Pays: England
ID NLM: 8607637

Informations de publication

Date de publication:
07 2020
Historique:
received: 05 02 2020
revised: 19 05 2020
accepted: 01 06 2020
pubmed: 4 6 2020
medline: 4 5 2021
entrez: 4 6 2020
Statut: ppublish

Résumé

In the budding yeast Saccharomyces cerevisiae, Svl3 and Pam1 proteins work as functional homologues. Loss of their function causes increased levels of chitin deposition in the cell wall and temperature sensitivity, suggesting their involvement in cell wall formation. We found that the N- and C-termini of these proteins have distinctive and critical functions. They contain an N-terminal part that has a probable 2-dehydropantoate 2-reductase domain. In Svl3, this part can be replaced with the yeast 2-dehydropantoate 2-reductase, Pan5, suggesting that Svl3 and its homologues may be able to mediate 2-dehydropantoate 2-reductase function. On the other hand, Svl3 is recruited to the bud tip and bud neck via multiple localization signals in the C-terminal part. One of such signals is the lysine-rich region located in the C-terminal end. The function and localization of Svl3 are significantly disrupted by the loss of this lysine-rich region; however, its localization is not completely abolished by the mutation because another localization signal enables appropriate transport. Svl3 and Pam1 orthologues are found in cells across fungal species. The Svl3 orthologues of Candida glabrata can complement the loss of Svl3 and Pam1 in S. cerevisiae. C. glabrata cells lacking the SVL3 and PAM1 orthologue genes exhibit phenotypes similar to those observed in svl3∆pam1∆ S. cerevisiae cells. Thus, Svl3 homologues may be generally required for the assembly of the cell wall in fungal cells.

Identifiants

pubmed: 32491201
doi: 10.1002/yea.3502
doi:

Substances chimiques

Fungal Proteins 0
Saccharomyces cerevisiae Proteins 0
Chitin 1398-61-4
Alcohol Oxidoreductases EC 1.1.-
2-dehydropantoate 2-reductase EC 1.1.1.169

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

359-371

Informations de copyright

© 2020 John Wiley & Sons, Ltd.

Références

Christodoulidou, A., Bouriotis, V., & Thireos, G. (1996). Two sporulation-specific chitin deacetylase-encoding genes are required for the ascospore wall rigidity of Saccharomyces cerevisiae. The Journal of Biological Chemistry, 271(49), 31420-31425. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8940152, https://doi.org/10.1074/jbc.271.49.31420
Christodoulidou, A., Briza, P., Ellinger, A., & Bouriotis, V. (1999). Yeast ascospore wall assembly requires two chitin deacetylase isozymes. FEBS Letters, 460(2), 275-279. https://doi.org/10.1016/s0014-5793(99)01334-4
Ciulli, A., Chirgadze, D. Y., Smith, A. G., Blundell, T. L., & Abell, C. (2007). Crystal structure of Escherichia coli ketopantoate reductase in a ternary complex with NADP+ and pantoate bound: Substrate recognition, conformational change, and cooperativity. The Journal of Biological Chemistry, 282(11), 8487-8497. https://doi.org/10.1074/jbc.M611171200
Coluccio, A., Bogengruber, E., Conrad, M. N., Dresser, M. E., Briza, P., & Neiman, A. M. (2004). Morphogenetic pathway of spore wall assembly in Saccharomyces cerevisiae. Eukaryotic Cell, 3(6), 1464-1475. https://doi.org/10.1128/EC.3.6.1464-1475.2004
Finger, F. P., Hughes, T. E., & Novick, P. (1998). Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell, 92(4), 559-571. https://doi.org/10.1016/s0092-8674(00)80948-4
Free, S. J. (2013). Fungal cell wall organization and biosynthesis. Advances in Genetics, 81, 33-82. https://doi.org/10.1016/B978-0-12-407677-8.00002-6
Halim, A., Larsen, I. S., Neubert, P., Joshi, H. J., Petersen, B. L., Vakhrushev, S. Y., … Clausen, H. (2015). Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15648-15653. https://doi.org/10.1073/pnas.1511743112
Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., & O'Shea, E. K. (2003). Global analysis of protein localization in budding yeast. Nature, 425(6959), 686-691. https://doi.org/10.1038/nature02026
Janke, C., Magiera, M. M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., … Knop, M. (2004). A versatile toolbox for PCR-based tagging of yeast genes: New fluorescent proteins, more markers and promoter substitution cassettes. Yeast, 21(11), 947-962. https://doi.org/10.1002/yea.1142
Kang, M. S., Elango, N., Mattia, E., Au-Young, J., Robbins, P. W., & Cabib, E. (1984). Isolation of chitin synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the reaction product. The Journal of Biological Chemistry, 259(23), 14966-14972. https://www.ncbi.nlm.nih.gov/pubmed/6238967
Kremers, G. J., Goedhart, J., van den Heuvel, D. J., Gerritsen, H. C., & Gadella, T. W. Jr. (2007). Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry, 46(12), 3775-3783. https://doi.org/10.1021/bi0622874
Kupiec, M., Byers, B., Esposito, R. E., & Mitchell, A. P. (1997). Meiosis and sporulation in Saccharomyces cerevisiae. In J. R. Pringle, J. R. Broach, & E. W. Jones (Eds.), The molecular and cell biology of the yeast Saccharomyces (pp. 889-1036). Cold Spring Harbor Laboratory Press.
Levin, D. E. (2005). Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 69(2), 262-291. https://doi.org/10.1128/MMBR.69.2.262-291.2005
Li, L., Shi, X., Guo, X., Li, H., & Xu, C. (2014). Ionic protein-lipid interaction at the plasma membrane: What can the charge do? Trends in Biochemical Sciences, 39(3), 130-140. https://doi.org/10.1016/j.tibs.2014.01.002
Mi, H., Muruganujan, A., Casagrande, J. T., & Thomas, P. D. (2013). Large-scale gene function analysis with the PANTHER classification system. Nature Protocols, 8(8), 1551-1566. https://doi.org/10.1038/nprot.2013.092
Nakanishi, H., de los Santos, P., & Neiman, A. M. (2004). Positive and negative regulation of a SNARE protein by control of intracellular localization. Molecular Biology of the Cell, 15(4), 1802-1815. https://doi.org/10.1091/mbc.e03-11-0798
Nakanishi, H., Li, F., Han, B., Arai, S., & Gao, X. D. (2017). Yeast cells as an assay system for in vivo O-GlcNAc modification. Biochimica et Biophysica Acta - General Subjects, 1861(5 Pt A), 1159-1167. https://doi.org/10.1016/j.bbagen.2017.03.002
Neiman, A. M. (2005). Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 69(4), 565-584. https://doi.org/10.1128/MMBR.69.4.565-584.2005
Neiman, A. M., Katz, L., & Brennwald, P. J. (2000). Identification of domains required for developmentally regulated SNARE function in Saccharomyces cerevisiae. Genetics, 155(4), 1643-1655. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10924463
Orlean, P. (1997). Biogenesis of yeast wall and surface components. In J. R. Pringle, J. R. Broach, & E. W. Jones (Eds.), The molecular and cell biology of the yeast Saccharomyces (pp. 229-362). Cold Spring Harbor Laboratory Press.
Orlean, P. (2012). Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics, 192(3), 775-818. https://doi.org/10.1534/genetics.112.144485
Pammer, M., Briza, P., Ellinger, A., Schuster, T., Stucka, R., Feldmann, H., & Breitenbach, M. (1992). DIT101 (CSD2, CAL1), a cell cycle-regulated yeast gene required for synthesis of chitin in cell walls and chitosan in spore walls. Yeast, 8(12), 1089-1099. https://doi.org/10.1002/yea.320081211
Pan, H. P., Wang, N., Tachikawa, H., Gao, X. D., & Nakanishi, H. (2018). Osw2 is required for proper assembly of glucan and/or mannan layers of the yeast spore wall. Journal of Biochemistry, 163(4), 293-304. https://doi.org/10.1093/jb/mvx082
Pan, H. P., Wang, N., Tachikawa, H., Nakanishi, H., & Gao, X. D. (2017). Beta-1,6-glucan synthesis-associated genes are required for proper spore wall formation in Saccharomyces cerevisiae. Yeast, 34(11), 431-446. https://doi.org/10.1002/yea.3244
Roncero, C., & Duran, A. (1985). Effect of calcofluor white and congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. Journal of Bacteriology, 163(3), 1180-1185. https://www.ncbi.nlm.nih.gov/pubmed/3897187, https://doi.org/10.1128/JB.163.3.1180-1185.1985
Roncero, C., Valdivieso, M. H., Ribas, J. C., & Duran, A. (1988). Effect of calcofluor white on chitin synthases from Saccharomyces cerevisiae. Journal of Bacteriology, 170(4), 1945-1949. https://doi.org/10.1128/jb.170.4.1945-1949.1988
Sburlati, A., & Cabib, E. (1986). Chitin synthetase 2, a presumptive participant in septum formation in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 261(32), 15147-15152. https://www.ncbi.nlm.nih.gov/pubmed/2945823
Shaw, J. A., Mol, P. C., Bowers, B., Silverman, S. J., Valdivieso, M. H., Duran, A., & Cabib, E. (1991). The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. The Journal of Cell Biology, 114(1), 111-123. https://doi.org/10.1083/jcb.114.1.111
Sikorski, R. S., & Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122(1), 19-27. https://www.ncbi.nlm.nih.gov/pubmed/2659436
Ueno, K., Uno, J., Nakayama, H., Sasamoto, K., Mikami, Y., & Chibana, H. (2007). Development of a highly efficient gene targeting system induced by transient repression of YKU80 expression in Candida glabrata. Eukaryotic Cell, 6(7), 1239-1247. https://doi.org/10.1128/EC.00414-06
Valdivieso, M. H., Mol, P. C., Shaw, J. A., Cabib, E., & Duran, A. (1991). CAL1, a gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae. The Journal of Cell Biology, 114(1), 101-109. https://doi.org/10.1083/jcb.114.1.101
White, W. H., Gunyuzlu, P. L., & Toyn, J. H. (2001). Saccharomyces cerevisiae is capable of de novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. The Journal of Biological Chemistry, 276(14), 10794-10800. https://doi.org/10.1074/jbc.M009804200
Xie, Y., Zheng, Y., Li, H., Luo, X., He, Z., Cao, S., … Ren, J. (2016). GPS-lipid: A robust tool for the prediction of multiple lipid modification sites. Scientific Reports, 6, 28249. https://doi.org/10.1038/srep28249
Yeung, T., Gilbert, G. E., Shi, J., Silvius, J., Kapus, A., & Grinstein, S. (2008). Membrane phosphatidylserine regulates surface charge and protein localization. Science, 319(5860), 210-213. https://doi.org/10.1126/science.1152066

Auteurs

Yifan Jin (Y)

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Michiyo Okamoto (M)

Medical Mycology Research Center, Chiba University, Chiba, Japan.

Hiroji Chibana (H)

Medical Mycology Research Center, Chiba University, Chiba, Japan.

Guoyu Liu (G)

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Xiao-Dong Gao (XD)

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Hideki Nakanishi (H)

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
Humans Receptors, Antigen, T-Cell Proto-Oncogene Proteins p21(ras) Pancreatic Neoplasms T-Lymphocytes

Classifications MeSH