Orbitofrontal control of visual cortex gain promotes visual associative learning.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
03 06 2020
Historique:
received: 16 10 2019
accepted: 14 05 2020
entrez: 5 6 2020
pubmed: 5 6 2020
medline: 19 8 2020
Statut: epublish

Résumé

The orbitofrontal cortex (OFC) encodes expected outcomes and plays a critical role in flexible, outcome-guided behavior. The OFC projects to primary visual cortex (V1), yet the function of this top-down projection is unclear. We find that optogenetic activation of OFC projection to V1 reduces the amplitude of V1 visual responses via the recruitment of local somatostatin-expressing (SST) interneurons. Using mice performing a Go/No-Go visual task, we show that the OFC projection to V1 mediates the outcome-expectancy modulation of V1 responses to the reward-irrelevant No-Go stimulus. Furthermore, V1-projecting OFC neurons reduce firing during expectation of reward. In addition, chronic optogenetic inactivation of OFC projection to V1 impairs, whereas chronic activation of SST interneurons in V1 improves the learning of Go/No-Go visual task, without affecting the immediate performance. Thus, OFC top-down projection to V1 is crucial to drive visual associative learning by modulating the response gain of V1 neurons to non-relevant stimulus.

Identifiants

pubmed: 32493971
doi: 10.1038/s41467-020-16609-7
pii: 10.1038/s41467-020-16609-7
pmc: PMC7270099
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2784

Références

Murray, E. A., O’Doherty, J. P. & Schoenbaum, G. What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies. J. Neurosci. 27, 8166–8169 (2007).
pubmed: 17670960 pmcid: 2630163 doi: 10.1523/JNEUROSCI.1556-07.2007
Schoenbaum, G., Roesch, M. R., Stalnaker, T. A. & Takahashi, Y. K. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat. Rev. Neurosci. 10, 885–892 (2009).
pubmed: 19904278 pmcid: 2835299 doi: 10.1038/nrn2753
Rudebeck, P. H. & Murray, E. A. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron 84, 1143–1156 (2014).
pubmed: 25521376 pmcid: 4271193 doi: 10.1016/j.neuron.2014.10.049
Thorpe, S. J., Rolls, E. T. & Maddison, S. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res. 49, 93–115 (1983).
pubmed: 6861938 doi: 10.1007/BF00235545
Schoenbaum, G. & Eichenbaum, H. Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. J. Neurophysiol. 74, 733–750 (1995).
pubmed: 7472378 doi: 10.1152/jn.1995.74.2.733
Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat. Neurosci. 1, 155–159 (1998).
pubmed: 10195132 doi: 10.1038/407
Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).
pubmed: 10227292 doi: 10.1038/19525
Wallis, J. D. & Miller, E. K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 18, 2069–2081 (2003).
pubmed: 14622240 doi: 10.1046/j.1460-9568.2003.02922.x
Roesch, M. R. & Olson, C. R. Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304, 307–310 (2004).
pubmed: 15073380 pmcid: 15073380 doi: 10.1126/science.1093223
Kennerley, S. W. & Wallis, J. D. Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables. Eur. J. Neurosci. 29, 2061–2073 (2009).
pubmed: 19453638 pmcid: 2715849 doi: 10.1111/j.1460-9568.2009.06743.x
Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).
pubmed: 18690210 doi: 10.1038/nature07200
Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).
pubmed: 16633341 pmcid: 2630027 doi: 10.1038/nature04676
Gallagher, M., McMahan, R. W. & Schoenbaum, G. Orbitofrontal cortex and representation of incentive value in associative learning. J. Neurosci. 19, 6610–6614 (1999).
pubmed: 10414988 pmcid: 6782791 doi: 10.1523/JNEUROSCI.19-15-06610.1999
Pickens, C. L. et al. Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J. Neurosci. 23, 11078–11084 (2003).
pubmed: 14657165 pmcid: 6741041 doi: 10.1523/JNEUROSCI.23-35-11078.2003
Pickens, C. L., Saddoris, M. P., Gallagher, M. & Holland, P. C. Orbitofrontal lesions impair use of cue-outcome associations in a devaluation task. Behav. Neurosci. 119, 317–322 (2005).
pubmed: 15727536 pmcid: 1201523 doi: 10.1037/0735-7044.119.1.317
Schoenbaum, G., Setlow, B., Nugent, S. L., Saddoris, M. P. & Gallagher, M. Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn Mem. 10, 129–140 (2003).
pubmed: 12663751 pmcid: 196660 doi: 10.1101/lm.55203
Izquierdo, A., Suda, R. K. & Murray, E. A. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24, 7540–7548 (2004).
pubmed: 15329401 pmcid: 6729636 doi: 10.1523/JNEUROSCI.1921-04.2004
McDannald, M. A., Saddoris, M. P., Gallagher, M. & Holland, P. C. Lesions of orbitofrontal cortex impair rats’ differential outcome expectancy learning but not conditioned stimulus-potentiated feeding. J. Neurosci. 25, 4626–4632 (2005).
pubmed: 15872110 pmcid: 1201522 doi: 10.1523/JNEUROSCI.5301-04.2005
Machado, C. J. & Bachevalier, J. The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates. Eur. J. Neurosci. 25, 2885–2904 (2007).
pubmed: 17561849 doi: 10.1111/j.1460-9568.2007.05525.x
West, E. A., DesJardin, J. T., Gale, K. & Malkova, L. Transient inactivation of orbitofrontal cortex blocks reinforcer devaluation in macaques. J. Neurosci. 31, 15128–15135 (2011).
pubmed: 22016546 pmcid: 3224797 doi: 10.1523/JNEUROSCI.3295-11.2011
Rudebeck, P. H. & Murray, E. A. Dissociable effects of subtotal lesions within the macaque orbital prefrontal cortex on reward-guided behavior. J. Neurosci. 31, 10569–10578 (2011).
pubmed: 21775601 pmcid: 3171204 doi: 10.1523/JNEUROSCI.0091-11.2011
Burke, K. A., Franz, T. M., Miller, D. N. & Schoenbaum, G. The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature 454, 340–344 (2008).
pubmed: 18563088 pmcid: 2727745 doi: 10.1038/nature06993
Takahashi, Y. K. et al. The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62, 269–280 (2009).
pubmed: 19409271 pmcid: 2693075 doi: 10.1016/j.neuron.2009.03.005
McDannald, M. A., Lucantonio, F., Burke, K. A., Niv, Y. & Schoenbaum, G. Ventral striatum and orbitofrontal cortex are both required for model-based, but not model-free, reinforcement learning. J. Neurosci. 31, 2700–2705 (2011).
pubmed: 21325538 pmcid: 3079289 doi: 10.1523/JNEUROSCI.5499-10.2011
Ostlund, S. B. & Balleine, B. W. Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. J. Neurosci. 27, 4819–4825 (2007).
pubmed: 17475789 pmcid: 6672090 doi: 10.1523/JNEUROSCI.5443-06.2007
Rudebeck, P. H., Saunders, R. C., Prescott, A. T., Chau, L. S. & Murray, E. A. Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat. Neurosci. 16, 1140–1145 (2013).
pubmed: 23792944 pmcid: 3733248 doi: 10.1038/nn.3440
Namboodiri, V. M. K. et al. Single-cell activity tracking reveals that orbitofrontal neurons acquire and maintain a long-term memory to guide behavioral adaptation. Nat. Neurosci. 22, 1110–1121 (2019).
pubmed: 31160741 pmcid: 7002110 doi: 10.1038/s41593-019-0408-1
Saddoris, M. P., Gallagher, M. & Schoenbaum, G. Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron 46, 321–331 (2005).
pubmed: 15848809 doi: 10.1016/j.neuron.2005.02.018
Takahashi, Y. K. et al. Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nat. Neurosci. 14, 1590–1597 (2011).
pubmed: 22037501 pmcid: 3225718 doi: 10.1038/nn.2957
Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).
pubmed: 10845072 doi: 10.1146/annurev.neuro.23.1.473
Takahashi, Y. K. et al. Neural estimates of imagined outcomes in the orbitofrontal cortex drive behavior and learning. Neuron 80, 507–518 (2013).
pubmed: 24139047 doi: 10.1016/j.neuron.2013.08.008
Zingg, B. et al. Neural networks of the mouse neocortex. Cell 156, 1096–1111 (2014).
pubmed: 24581503 pmcid: 4169118 doi: 10.1016/j.cell.2014.02.023
Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R. J. & Reinoso-Suarez, F. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb. Cortex 10, 220–242 (2000).
pubmed: 10731218 doi: 10.1093/cercor/10.3.220
Carmichael, S. T. & Price, J. L. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664 (1995).
pubmed: 8847422 doi: 10.1002/cne.903630409
Gilbert, C. D. & Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013).
pubmed: 23595013 doi: 10.1038/nrn3476
Zhang, S. et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014).
pubmed: 25104383 pmcid: 5776147 doi: 10.1126/science.1254126
Winkowski, D. E. et al. Orbitofrontal cortex neurons respond to sound and activate primary auditory cortex neurons. Cereb. Cortex 28, 868–879 (2017).
pmcid: 6059099 doi: 10.1093/cercor/bhw409
Manita, S. et al. A top-down cortical circuit for accurate sensory perception. Neuron 86, 1304–1316 (2015).
pubmed: 26004915 doi: 10.1016/j.neuron.2015.05.006
Fiser, A. et al. Experience-dependent spatial expectations in mouse visual cortex. Nat. Neurosci. 19, 1658–1664 (2016).
pubmed: 27618309 doi: 10.1038/nn.4385
Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A. & Keller, G. B. A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95, 1420–1432 e1425 (2017).
pubmed: 28910624 doi: 10.1016/j.neuron.2017.08.036
Poort, J. et al. Learning enhances sensory and multiple non-sensory representations in primary visual cortex. Neuron 86, 1478–1490 (2015).
pubmed: 26051421 pmcid: 4503798 doi: 10.1016/j.neuron.2015.05.037
Makino, H. & Komiyama, T. Learning enhances the relative impact of top-down processing in the visual cortex. Nat. Neurosci. 18, 1116–1122 (2015).
pubmed: 26167904 pmcid: 4523093 doi: 10.1038/nn.4061
Wall, N. R., Wickersham, I. R., Cetin, A., De La Parra, M. & Callaway, E. M. Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc. Natl Acad. Sci. USA 107, 21848–21853 (2010).
pubmed: 21115815 doi: 10.1073/pnas.1011756107
Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).
pubmed: 3729586 pmcid: 3729586 doi: 10.1038/nn.3446
Bakhurin, K. I. et al. Differential encoding of time by prefrontal and striatal network dynamics. J. Neurosci. 37, 854–870 (2017).
pubmed: 28123021 pmcid: 5296780 doi: 10.1523/JNEUROSCI.1789-16.2016
Zhu, Y., Qiao, W., Liu, K., Zhong, H. & Yao, H. Control of response reliability by parvalbumin-expressing interneurons in visual cortex. Nat. Commun. 6, 6802 (2015).
pubmed: 25869033 doi: 10.1038/ncomms7802
Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, 255 (2019).
pubmed: 31000656 pmcid: 6525101 doi: 10.1126/science.aav7893
Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).
pubmed: 27720486 pmcid: 5872824 doi: 10.1016/j.neuron.2016.09.021
Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363–366 (2013).
pubmed: 23708967 pmcid: 4349584 doi: 10.1038/nature12176
Makino, H., Hwang, E. J., Hedrick, N. G. & Komiyama, T. Circuit mechanisms of sensorimotor learning. Neuron 92, 705–721 (2016).
pubmed: 27883902 pmcid: 5131723 doi: 10.1016/j.neuron.2016.10.029
Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16, 1671–1677 (2013).
pubmed: 24097038 doi: 10.1038/nn.3532
Kwon, S. E., Yang, H., Minamisawa, G. & O’Connor, D. H. Sensory and decision-related activity propagate in a cortical feedback loop during touch perception. Nat. Neurosci. 19, 1243–1249 (2016).
pubmed: 27437910 pmcid: 5003632 doi: 10.1038/nn.4356
Vélez-Fort, M. et al. A circuit for integration of head- and visual-motion signals in layer 6 of mouse primary visual cortex. Neuron 98, 179–191 (2018).
pubmed: 29551490 pmcid: 5896233 doi: 10.1016/j.neuron.2018.02.023
Chubykin, A. A., Roach, E. B., Bear, M. F. & Shuler, M. G. A cholinergic mechanism for reward timing within primary visual cortex. Neuron 77, 723–735 (2013).
pubmed: 23439124 pmcid: 3597441 doi: 10.1016/j.neuron.2012.12.039
Zhou, J., Jia, C., Feng, Q., Bao, J. & Luo, M. Prospective coding of dorsal raphe reward signals by the orbitofrontal cortex. J. Neurosci. 35, 2717–2730 (2015).
pubmed: 25673861 pmcid: 6605606 doi: 10.1523/JNEUROSCI.4017-14.2015
Khan, A. G. et al. Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nat. Neurosci. 21, 851–859 (2018).
pubmed: 29786081 doi: 10.1038/s41593-018-0143-z
McDannald, M. A., Jones, J. L., Takahashi, Y. K. & Schoenbaum, G. Learning theory: a driving force in understanding orbitofrontal function. Neurobiol. Learn. Mem. 108, 22–27 (2014).
pubmed: 23770491 doi: 10.1016/j.nlm.2013.06.003
Berendse, H. W., Galis-de Graaf, Y. & Groenewegen, H. J. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J. Comp. Neurol. 316, 314–347 (1992).
pubmed: 1577988 doi: 10.1002/cne.903160305
Cooch, N. K. et al. Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive ventral striatal neurons. Nat. Commun. 6, 7195 (2015).
pubmed: 26006060 pmcid: 4445428 doi: 10.1038/ncomms8195
Pascoli, V. et al. Stochastic synaptic plasticity underlying compulsion in a model of addiction. Nature 564, 366–371 (2018).
pubmed: 30568192 doi: 10.1038/s41586-018-0789-4
Sharpe, M. J. & Schoenbaum, G. Back to basics: making predictions in the orbitofrontal-amygdala circuit. Neurobiol. Learn. Mem. 131, 201–206 (2016).
pubmed: 27112314 pmcid: 5541254 doi: 10.1016/j.nlm.2016.04.009
Jo, Y. S. & Mizumori, S. J. Y. Prefrontal regulation of neuronal activity in the ventral tegmental area. Cereb. Cortex 26, 4057–4068 (2016).
pubmed: 26400913 pmcid: 5028001 doi: 10.1093/cercor/bhv215
Groman, S. M. et al. Orbitofrontal circuits control multiple reinforcement-learning processes. Neuron 103, 734–746 (2019).
pubmed: 31253468 doi: 10.1016/j.neuron.2019.05.042
Andermann, M. L., Kerlin, A. M. & Reid, R. C. Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Front. Cell. Neurosci. 4, 3 (2010).
pubmed: 20407583 pmcid: 2854571
Jones, J. P. & Palmer, L. A. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 58, 1187–1211 (1987).
pubmed: 3437330 doi: 10.1152/jn.1987.58.6.1187
Hoy, J. L. & Niell, C. M. Layer-specific refinement of visual cortex function after eye opening in the awake mouse. J. Neurosci. 35, 3370–3383 (2015).
pubmed: 25716837 pmcid: 4339350 doi: 10.1523/JNEUROSCI.3174-14.2015
Xu, X., Ichida, J., Shostak, Y., Bonds, A. B. & Casagrande, V. A. Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction? Vis. Neurosci. 19, 97–108 (2002).
pubmed: 12180863 doi: 10.1017/S0952523802191097
Xu, M. et al. Basal forebrain circuit for sleep-wake control. Nat. Neurosci. 18, 1641–1647 (2015).
pubmed: 26457552 pmcid: 5776144 doi: 10.1038/nn.4143

Auteurs

Dechen Liu (D)

Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

Juan Deng (J)

Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.

Zhewei Zhang (Z)

Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.

Zhi-Yu Zhang (ZY)

Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

Yan-Gang Sun (YG)

Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.

Tianming Yang (T)

Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.

Haishan Yao (H)

Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. haishanyao@ion.ac.cn.
Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China. haishanyao@ion.ac.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH