Orbitofrontal control of visual cortex gain promotes visual associative learning.
Animals
Axons
/ physiology
Behavior, Animal
Excitatory Postsynaptic Potentials
/ radiation effects
Inhibitory Postsynaptic Potentials
/ radiation effects
Lasers
Learning
/ physiology
Light
Mice, Inbred C57BL
Photic Stimulation
Prefrontal Cortex
/ physiology
Reward
Task Performance and Analysis
Visual Cortex
/ physiology
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
03 06 2020
03 06 2020
Historique:
received:
16
10
2019
accepted:
14
05
2020
entrez:
5
6
2020
pubmed:
5
6
2020
medline:
19
8
2020
Statut:
epublish
Résumé
The orbitofrontal cortex (OFC) encodes expected outcomes and plays a critical role in flexible, outcome-guided behavior. The OFC projects to primary visual cortex (V1), yet the function of this top-down projection is unclear. We find that optogenetic activation of OFC projection to V1 reduces the amplitude of V1 visual responses via the recruitment of local somatostatin-expressing (SST) interneurons. Using mice performing a Go/No-Go visual task, we show that the OFC projection to V1 mediates the outcome-expectancy modulation of V1 responses to the reward-irrelevant No-Go stimulus. Furthermore, V1-projecting OFC neurons reduce firing during expectation of reward. In addition, chronic optogenetic inactivation of OFC projection to V1 impairs, whereas chronic activation of SST interneurons in V1 improves the learning of Go/No-Go visual task, without affecting the immediate performance. Thus, OFC top-down projection to V1 is crucial to drive visual associative learning by modulating the response gain of V1 neurons to non-relevant stimulus.
Identifiants
pubmed: 32493971
doi: 10.1038/s41467-020-16609-7
pii: 10.1038/s41467-020-16609-7
pmc: PMC7270099
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2784Références
Murray, E. A., O’Doherty, J. P. & Schoenbaum, G. What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies. J. Neurosci. 27, 8166–8169 (2007).
pubmed: 17670960
pmcid: 2630163
doi: 10.1523/JNEUROSCI.1556-07.2007
Schoenbaum, G., Roesch, M. R., Stalnaker, T. A. & Takahashi, Y. K. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat. Rev. Neurosci. 10, 885–892 (2009).
pubmed: 19904278
pmcid: 2835299
doi: 10.1038/nrn2753
Rudebeck, P. H. & Murray, E. A. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron 84, 1143–1156 (2014).
pubmed: 25521376
pmcid: 4271193
doi: 10.1016/j.neuron.2014.10.049
Thorpe, S. J., Rolls, E. T. & Maddison, S. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res. 49, 93–115 (1983).
pubmed: 6861938
doi: 10.1007/BF00235545
Schoenbaum, G. & Eichenbaum, H. Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. J. Neurophysiol. 74, 733–750 (1995).
pubmed: 7472378
doi: 10.1152/jn.1995.74.2.733
Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat. Neurosci. 1, 155–159 (1998).
pubmed: 10195132
doi: 10.1038/407
Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).
pubmed: 10227292
doi: 10.1038/19525
Wallis, J. D. & Miller, E. K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 18, 2069–2081 (2003).
pubmed: 14622240
doi: 10.1046/j.1460-9568.2003.02922.x
Roesch, M. R. & Olson, C. R. Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304, 307–310 (2004).
pubmed: 15073380
pmcid: 15073380
doi: 10.1126/science.1093223
Kennerley, S. W. & Wallis, J. D. Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables. Eur. J. Neurosci. 29, 2061–2073 (2009).
pubmed: 19453638
pmcid: 2715849
doi: 10.1111/j.1460-9568.2009.06743.x
Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).
pubmed: 18690210
doi: 10.1038/nature07200
Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).
pubmed: 16633341
pmcid: 2630027
doi: 10.1038/nature04676
Gallagher, M., McMahan, R. W. & Schoenbaum, G. Orbitofrontal cortex and representation of incentive value in associative learning. J. Neurosci. 19, 6610–6614 (1999).
pubmed: 10414988
pmcid: 6782791
doi: 10.1523/JNEUROSCI.19-15-06610.1999
Pickens, C. L. et al. Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J. Neurosci. 23, 11078–11084 (2003).
pubmed: 14657165
pmcid: 6741041
doi: 10.1523/JNEUROSCI.23-35-11078.2003
Pickens, C. L., Saddoris, M. P., Gallagher, M. & Holland, P. C. Orbitofrontal lesions impair use of cue-outcome associations in a devaluation task. Behav. Neurosci. 119, 317–322 (2005).
pubmed: 15727536
pmcid: 1201523
doi: 10.1037/0735-7044.119.1.317
Schoenbaum, G., Setlow, B., Nugent, S. L., Saddoris, M. P. & Gallagher, M. Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn Mem. 10, 129–140 (2003).
pubmed: 12663751
pmcid: 196660
doi: 10.1101/lm.55203
Izquierdo, A., Suda, R. K. & Murray, E. A. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24, 7540–7548 (2004).
pubmed: 15329401
pmcid: 6729636
doi: 10.1523/JNEUROSCI.1921-04.2004
McDannald, M. A., Saddoris, M. P., Gallagher, M. & Holland, P. C. Lesions of orbitofrontal cortex impair rats’ differential outcome expectancy learning but not conditioned stimulus-potentiated feeding. J. Neurosci. 25, 4626–4632 (2005).
pubmed: 15872110
pmcid: 1201522
doi: 10.1523/JNEUROSCI.5301-04.2005
Machado, C. J. & Bachevalier, J. The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates. Eur. J. Neurosci. 25, 2885–2904 (2007).
pubmed: 17561849
doi: 10.1111/j.1460-9568.2007.05525.x
West, E. A., DesJardin, J. T., Gale, K. & Malkova, L. Transient inactivation of orbitofrontal cortex blocks reinforcer devaluation in macaques. J. Neurosci. 31, 15128–15135 (2011).
pubmed: 22016546
pmcid: 3224797
doi: 10.1523/JNEUROSCI.3295-11.2011
Rudebeck, P. H. & Murray, E. A. Dissociable effects of subtotal lesions within the macaque orbital prefrontal cortex on reward-guided behavior. J. Neurosci. 31, 10569–10578 (2011).
pubmed: 21775601
pmcid: 3171204
doi: 10.1523/JNEUROSCI.0091-11.2011
Burke, K. A., Franz, T. M., Miller, D. N. & Schoenbaum, G. The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature 454, 340–344 (2008).
pubmed: 18563088
pmcid: 2727745
doi: 10.1038/nature06993
Takahashi, Y. K. et al. The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62, 269–280 (2009).
pubmed: 19409271
pmcid: 2693075
doi: 10.1016/j.neuron.2009.03.005
McDannald, M. A., Lucantonio, F., Burke, K. A., Niv, Y. & Schoenbaum, G. Ventral striatum and orbitofrontal cortex are both required for model-based, but not model-free, reinforcement learning. J. Neurosci. 31, 2700–2705 (2011).
pubmed: 21325538
pmcid: 3079289
doi: 10.1523/JNEUROSCI.5499-10.2011
Ostlund, S. B. & Balleine, B. W. Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. J. Neurosci. 27, 4819–4825 (2007).
pubmed: 17475789
pmcid: 6672090
doi: 10.1523/JNEUROSCI.5443-06.2007
Rudebeck, P. H., Saunders, R. C., Prescott, A. T., Chau, L. S. & Murray, E. A. Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat. Neurosci. 16, 1140–1145 (2013).
pubmed: 23792944
pmcid: 3733248
doi: 10.1038/nn.3440
Namboodiri, V. M. K. et al. Single-cell activity tracking reveals that orbitofrontal neurons acquire and maintain a long-term memory to guide behavioral adaptation. Nat. Neurosci. 22, 1110–1121 (2019).
pubmed: 31160741
pmcid: 7002110
doi: 10.1038/s41593-019-0408-1
Saddoris, M. P., Gallagher, M. & Schoenbaum, G. Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron 46, 321–331 (2005).
pubmed: 15848809
doi: 10.1016/j.neuron.2005.02.018
Takahashi, Y. K. et al. Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nat. Neurosci. 14, 1590–1597 (2011).
pubmed: 22037501
pmcid: 3225718
doi: 10.1038/nn.2957
Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).
pubmed: 10845072
doi: 10.1146/annurev.neuro.23.1.473
Takahashi, Y. K. et al. Neural estimates of imagined outcomes in the orbitofrontal cortex drive behavior and learning. Neuron 80, 507–518 (2013).
pubmed: 24139047
doi: 10.1016/j.neuron.2013.08.008
Zingg, B. et al. Neural networks of the mouse neocortex. Cell 156, 1096–1111 (2014).
pubmed: 24581503
pmcid: 4169118
doi: 10.1016/j.cell.2014.02.023
Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R. J. & Reinoso-Suarez, F. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb. Cortex 10, 220–242 (2000).
pubmed: 10731218
doi: 10.1093/cercor/10.3.220
Carmichael, S. T. & Price, J. L. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664 (1995).
pubmed: 8847422
doi: 10.1002/cne.903630409
Gilbert, C. D. & Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013).
pubmed: 23595013
doi: 10.1038/nrn3476
Zhang, S. et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014).
pubmed: 25104383
pmcid: 5776147
doi: 10.1126/science.1254126
Winkowski, D. E. et al. Orbitofrontal cortex neurons respond to sound and activate primary auditory cortex neurons. Cereb. Cortex 28, 868–879 (2017).
pmcid: 6059099
doi: 10.1093/cercor/bhw409
Manita, S. et al. A top-down cortical circuit for accurate sensory perception. Neuron 86, 1304–1316 (2015).
pubmed: 26004915
doi: 10.1016/j.neuron.2015.05.006
Fiser, A. et al. Experience-dependent spatial expectations in mouse visual cortex. Nat. Neurosci. 19, 1658–1664 (2016).
pubmed: 27618309
doi: 10.1038/nn.4385
Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A. & Keller, G. B. A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95, 1420–1432 e1425 (2017).
pubmed: 28910624
doi: 10.1016/j.neuron.2017.08.036
Poort, J. et al. Learning enhances sensory and multiple non-sensory representations in primary visual cortex. Neuron 86, 1478–1490 (2015).
pubmed: 26051421
pmcid: 4503798
doi: 10.1016/j.neuron.2015.05.037
Makino, H. & Komiyama, T. Learning enhances the relative impact of top-down processing in the visual cortex. Nat. Neurosci. 18, 1116–1122 (2015).
pubmed: 26167904
pmcid: 4523093
doi: 10.1038/nn.4061
Wall, N. R., Wickersham, I. R., Cetin, A., De La Parra, M. & Callaway, E. M. Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc. Natl Acad. Sci. USA 107, 21848–21853 (2010).
pubmed: 21115815
doi: 10.1073/pnas.1011756107
Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).
pubmed: 3729586
pmcid: 3729586
doi: 10.1038/nn.3446
Bakhurin, K. I. et al. Differential encoding of time by prefrontal and striatal network dynamics. J. Neurosci. 37, 854–870 (2017).
pubmed: 28123021
pmcid: 5296780
doi: 10.1523/JNEUROSCI.1789-16.2016
Zhu, Y., Qiao, W., Liu, K., Zhong, H. & Yao, H. Control of response reliability by parvalbumin-expressing interneurons in visual cortex. Nat. Commun. 6, 6802 (2015).
pubmed: 25869033
doi: 10.1038/ncomms7802
Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, 255 (2019).
pubmed: 31000656
pmcid: 6525101
doi: 10.1126/science.aav7893
Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).
pubmed: 27720486
pmcid: 5872824
doi: 10.1016/j.neuron.2016.09.021
Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363–366 (2013).
pubmed: 23708967
pmcid: 4349584
doi: 10.1038/nature12176
Makino, H., Hwang, E. J., Hedrick, N. G. & Komiyama, T. Circuit mechanisms of sensorimotor learning. Neuron 92, 705–721 (2016).
pubmed: 27883902
pmcid: 5131723
doi: 10.1016/j.neuron.2016.10.029
Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16, 1671–1677 (2013).
pubmed: 24097038
doi: 10.1038/nn.3532
Kwon, S. E., Yang, H., Minamisawa, G. & O’Connor, D. H. Sensory and decision-related activity propagate in a cortical feedback loop during touch perception. Nat. Neurosci. 19, 1243–1249 (2016).
pubmed: 27437910
pmcid: 5003632
doi: 10.1038/nn.4356
Vélez-Fort, M. et al. A circuit for integration of head- and visual-motion signals in layer 6 of mouse primary visual cortex. Neuron 98, 179–191 (2018).
pubmed: 29551490
pmcid: 5896233
doi: 10.1016/j.neuron.2018.02.023
Chubykin, A. A., Roach, E. B., Bear, M. F. & Shuler, M. G. A cholinergic mechanism for reward timing within primary visual cortex. Neuron 77, 723–735 (2013).
pubmed: 23439124
pmcid: 3597441
doi: 10.1016/j.neuron.2012.12.039
Zhou, J., Jia, C., Feng, Q., Bao, J. & Luo, M. Prospective coding of dorsal raphe reward signals by the orbitofrontal cortex. J. Neurosci. 35, 2717–2730 (2015).
pubmed: 25673861
pmcid: 6605606
doi: 10.1523/JNEUROSCI.4017-14.2015
Khan, A. G. et al. Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nat. Neurosci. 21, 851–859 (2018).
pubmed: 29786081
doi: 10.1038/s41593-018-0143-z
McDannald, M. A., Jones, J. L., Takahashi, Y. K. & Schoenbaum, G. Learning theory: a driving force in understanding orbitofrontal function. Neurobiol. Learn. Mem. 108, 22–27 (2014).
pubmed: 23770491
doi: 10.1016/j.nlm.2013.06.003
Berendse, H. W., Galis-de Graaf, Y. & Groenewegen, H. J. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J. Comp. Neurol. 316, 314–347 (1992).
pubmed: 1577988
doi: 10.1002/cne.903160305
Cooch, N. K. et al. Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive ventral striatal neurons. Nat. Commun. 6, 7195 (2015).
pubmed: 26006060
pmcid: 4445428
doi: 10.1038/ncomms8195
Pascoli, V. et al. Stochastic synaptic plasticity underlying compulsion in a model of addiction. Nature 564, 366–371 (2018).
pubmed: 30568192
doi: 10.1038/s41586-018-0789-4
Sharpe, M. J. & Schoenbaum, G. Back to basics: making predictions in the orbitofrontal-amygdala circuit. Neurobiol. Learn. Mem. 131, 201–206 (2016).
pubmed: 27112314
pmcid: 5541254
doi: 10.1016/j.nlm.2016.04.009
Jo, Y. S. & Mizumori, S. J. Y. Prefrontal regulation of neuronal activity in the ventral tegmental area. Cereb. Cortex 26, 4057–4068 (2016).
pubmed: 26400913
pmcid: 5028001
doi: 10.1093/cercor/bhv215
Groman, S. M. et al. Orbitofrontal circuits control multiple reinforcement-learning processes. Neuron 103, 734–746 (2019).
pubmed: 31253468
doi: 10.1016/j.neuron.2019.05.042
Andermann, M. L., Kerlin, A. M. & Reid, R. C. Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Front. Cell. Neurosci. 4, 3 (2010).
pubmed: 20407583
pmcid: 2854571
Jones, J. P. & Palmer, L. A. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 58, 1187–1211 (1987).
pubmed: 3437330
doi: 10.1152/jn.1987.58.6.1187
Hoy, J. L. & Niell, C. M. Layer-specific refinement of visual cortex function after eye opening in the awake mouse. J. Neurosci. 35, 3370–3383 (2015).
pubmed: 25716837
pmcid: 4339350
doi: 10.1523/JNEUROSCI.3174-14.2015
Xu, X., Ichida, J., Shostak, Y., Bonds, A. B. & Casagrande, V. A. Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction? Vis. Neurosci. 19, 97–108 (2002).
pubmed: 12180863
doi: 10.1017/S0952523802191097
Xu, M. et al. Basal forebrain circuit for sleep-wake control. Nat. Neurosci. 18, 1641–1647 (2015).
pubmed: 26457552
pmcid: 5776144
doi: 10.1038/nn.4143