Therapeutic Targeting of Aristolochic Acid Induced Uremic Toxin Retention, SMAD 2/3 and JNK/ERK Pathways in Tubulointerstitial Fibrosis: Nephroprotective Role of Propolis in Chronic Kidney Disease.
Animals
Aristolochic Acids
Cresols
/ blood
Disease Models, Animal
Epithelial-Mesenchymal Transition
/ drug effects
Extracellular Signal-Regulated MAP Kinases
/ metabolism
Fibrosis
Indican
/ blood
JNK Mitogen-Activated Protein Kinases
/ metabolism
Kidney Tubules
/ drug effects
Mice, Inbred C57BL
Propolis
/ pharmacology
Renal Insufficiency, Chronic
/ chemically induced
Signal Transduction
Smad2 Protein
/ metabolism
Smad3 Protein
/ metabolism
Sulfuric Acid Esters
/ blood
Transforming Growth Factor beta
/ metabolism
Uremia
/ chemically induced
aristolochic acid
chronic kidney disease
propolis extract
transforming growth factor-β
tubulointerstitial fibrosis
uremic toxins
Journal
Toxins
ISSN: 2072-6651
Titre abrégé: Toxins (Basel)
Pays: Switzerland
ID NLM: 101530765
Informations de publication
Date de publication:
02 06 2020
02 06 2020
Historique:
received:
24
04
2020
revised:
23
05
2020
accepted:
28
05
2020
entrez:
6
6
2020
pubmed:
6
6
2020
medline:
4
3
2021
Statut:
epublish
Résumé
The nephrotoxicity of aristolochic acids (AAs), p-cresyl sulfate (PCS) and indoxyl sulfate (IS) were well-documented, culminating in tubulointerstitial fibrosis (TIF), advanced chronic kidney disease (CKD) and fatal urothelial cancer. Nonetheless, information regarding the attenuation of AAs-induced nephropathy (AAN) and uremic toxin retention is scarce. Propolis is a versatile natural product, exerting anti-oxidant, anti-cancer and anti-fibrotic properties. We aimed to evaluate nephroprotective effects of propolis extract (PE) in a murine model. AAN was developed to retain circulating PCS and IS using C57BL/6 mice, mimicking human CKD. The kidney sizes/masses, renal function indicators, plasma concentrations of PCS/IS, tissue expressions of TIF, α-SMA, collagen IaI, collagen IV and signaling pathways in transforming growth factor-β (TGF-β) family were analyzed among the control, PE, AAN, and AAN-PE groups. PE ameliorated AAN-induced renal atrophy, renal function deterioration, TIF, plasma retention of PCS and IS. PE also suppressed α-SMA expression and deposition of collagen IaI and IV in the fibrotic epithelial-mesenchymal transition. Notably, PE treatment in AAN model inhibited not only SMAD 2/3-dependent pathways but also SMAD-independent JNK/ERK activation in the signaling cascades of TGF-β family. Through disrupting fibrotic epithelial-mesenchymal transition and TGF-β signaling transduction pathways, PE improves TIF and thereby facilitates renal excretion of PCS and IS in AAN. In light of multi-faced toxicity of AAs, PE may be capable of developing a new potential drug to treat CKD patients exposed to AAs.
Identifiants
pubmed: 32498221
pii: toxins12060364
doi: 10.3390/toxins12060364
pmc: PMC7354564
pii:
doi:
Substances chimiques
Aristolochic Acids
0
Cresols
0
Smad2 Protein
0
Smad2 protein, mouse
0
Smad3 Protein
0
Smad3 protein, mouse
0
Sulfuric Acid Esters
0
Transforming Growth Factor beta
0
4-cresol sulfate
56M34ZQY1S
Propolis
9009-62-5
aristolochic acid I
94218WFP5T
Extracellular Signal-Regulated MAP Kinases
EC 2.7.11.24
JNK Mitogen-Activated Protein Kinases
EC 2.7.11.24
Indican
N187WK1Y1J
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministry of Science and Technology
ID : MOST 108-2320-B-385-001 -
Pays : International
Références
Nature. 2003 Oct 9;425(6958):577-84
pubmed: 14534577
Am J Physiol Renal Physiol. 2017 Mar 1;312(3):F375-F384
pubmed: 27974318
Am J Physiol Cell Physiol. 2011 Nov;301(5):C1201-12
pubmed: 21832251
Front Med (Lausanne). 2015 Aug 31;2:60
pubmed: 26380262
J Clin Med. 2018 Sep 09;7(9):
pubmed: 30205620
Chem Biol Interact. 2018 Aug 25;292:76-83
pubmed: 30017632
Biochem J. 2011 Aug 1;437(3):515-20
pubmed: 21585337
J Cell Physiol. 2019 Apr;234(4):4081-4094
pubmed: 30370562
Int J Mol Sci. 2017 Jan 29;18(2):
pubmed: 28146082
Biomed Pharmacother. 2018 May;101:670-681
pubmed: 29518614
Am J Physiol Cell Physiol. 2013 Apr 1;304(7):C685-92
pubmed: 23407882
J Recept Signal Transduct Res. 2008;28(4):413-28
pubmed: 18702012
J Recept Signal Transduct Res. 2009;29(5):280-5
pubmed: 19640259
Nutrients. 2018 Apr 18;10(4):
pubmed: 29670038
J Food Drug Anal. 2018 Apr;26(2):761-768
pubmed: 29567247
Nephron Exp Nephrol. 2003;95(3):e111-8
pubmed: 14646363
Nat Rev Nephrol. 2016 Feb;12(2):68-70
pubmed: 26714578
Kidney Int. 2006 Mar;69(5):794-7
pubmed: 16518340
Sci Rep. 2016 Nov 10;6:36618
pubmed: 27830716
Nat Rev Nephrol. 2016 Jun;12(6):325-38
pubmed: 27108839
Toxins (Basel). 2018 Jan 08;10(1):
pubmed: 29316724
Lancet. 1993 Feb 13;341(8842):387-91
pubmed: 8094166
N Engl J Med. 2017 Nov 2;377(18):1765-1776
pubmed: 29091561
Nephron Extra. 2013 Jan 11;3(1):12-29
pubmed: 23610565
Am J Kidney Dis. 1994 Aug;24(2):172-80
pubmed: 8048421
Am J Physiol Renal Physiol. 2010 Apr;298(4):F1006-17
pubmed: 20089673
Semin Liver Dis. 2017 Feb;37(1):1-10
pubmed: 28201843
Kidney Int. 2008 Jul;74(2):158-69
pubmed: 18418355
Cell Res. 2009 Jan;19(1):128-39
pubmed: 19114990
Toxicol Pathol. 2012 Jun;40(4 Suppl):14S-86S
pubmed: 22637735
Kidney Int. 2008 Mar;73(5):595-607
pubmed: 18094681
Int J Mol Sci. 2019 Sep 06;20(18):
pubmed: 31500176
Growth Factors. 2011 Oct;29(5):196-202
pubmed: 21740331
Biochim Biophys Acta. 2013 Jan;1832(1):142-50
pubmed: 23017367
Int J Clin Exp Pathol. 2012;5(4):326-30
pubmed: 22670176
Lancet. 2017 Oct 21;390(10105):1888-1917
pubmed: 28434650
Trends Biochem Sci. 2015 Jun;40(6):296-308
pubmed: 25935112
Toxins (Basel). 2018 Sep 11;10(9):
pubmed: 30208594
Life Sci. 2012 Apr 9;90(13-14):525-30
pubmed: 22326498
Nephrol Dial Transplant. 2012 Jan;27(1):292-8
pubmed: 21719716
Cancer Lett. 2007 Jan 8;245(1-2):218-31
pubmed: 16516378