ASY1 acts as a dosage-dependent antagonist of telomere-led recombination and mediates crossover interference in
ASY1
axis
crossover
interference
meiosis
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
16 06 2020
16 06 2020
Historique:
pubmed:
6
6
2020
medline:
15
9
2020
entrez:
6
6
2020
Statut:
ppublish
Résumé
During meiosis, interhomolog recombination produces crossovers and noncrossovers to create genetic diversity. Meiotic recombination frequency varies at multiple scales, with high subtelomeric recombination and suppressed centromeric recombination typical in many eukaryotes. During recombination, sister chromatids are tethered as loops to a polymerized chromosome axis, which, in plants, includes the ASY1 HORMA domain protein and REC8-cohesin complexes. Using chromatin immunoprecipitation, we show an ascending telomere-to-centromere gradient of ASY1 enrichment, which correlates strongly with REC8-cohesin ChIP-seq data. We mapped crossovers genome-wide in the absence of ASY1 and observe that telomere-led recombination becomes dominant. Surprisingly,
Identifiants
pubmed: 32499315
pii: 1921055117
doi: 10.1073/pnas.1921055117
pmc: PMC7306779
doi:
Substances chimiques
ASY1 protein, Arabidopsis
0
Arabidopsis Proteins
0
Cell Cycle Proteins
0
DNA-Binding Proteins
0
REC8 protein, Arabidopsis
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
13647-13658Subventions
Organisme : European Research Council
ID : 681987
Pays : International
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/M004937/1
Pays : United Kingdom
Informations de copyright
Copyright © 2020 the Author(s). Published by PNAS.
Déclaration de conflit d'intérêts
The authors declare no competing interest.
Références
Annu Rev Genet. 1999;33:603-754
pubmed: 10690419
Cold Spring Harb Symp Quant Biol. 2009;74:187-95
pubmed: 19903748
Curr Genomics. 2010 Apr;11(2):91-102
pubmed: 20885817
J Cell Sci. 2003 Jul 15;116(Pt 14):2999-3007
pubmed: 12783989
Plant J. 2005 Aug;43(3):458-66
pubmed: 16045480
Plant J. 2017 Feb;89(3):554-564
pubmed: 27797425
Plant J. 1999 Aug;19(4):463-72
pubmed: 10504568
Dev Cell. 2008 Feb;14(2):263-74
pubmed: 18267094
Nat Cell Biol. 2011 May;13(5):599-610
pubmed: 21478856
J Cell Sci. 2005 Oct 15;118(Pt 20):4621-32
pubmed: 16176934
Cell. 2011 Aug 5;146(3):372-83
pubmed: 21816273
Genes Dev. 2017 Feb 1;31(3):306-317
pubmed: 28223312
PLoS One. 2013 Aug 07;8(8):e72431
pubmed: 23951324
Methods Mol Biol. 2020;2061:219-236
pubmed: 31583663
Plant Physiol. 2018 Sep;178(1):233-246
pubmed: 30002256
Cell. 1997 Sep 19;90(6):1123-35
pubmed: 9323140
Annu Rev Plant Biol. 2015;66:297-327
pubmed: 25494464
Nat Protoc. 2013 Nov;8(11):2119-34
pubmed: 24113785
PLoS Genet. 2009 Sep;5(9):e1000654
pubmed: 19763177
Science. 2014 Jul 18;345(6194):1249721
pubmed: 25035497
Genes Dev. 2005 Oct 15;19(20):2488-500
pubmed: 16230536
Cell. 1999 Jul 9;98(1):91-103
pubmed: 10412984
Cell. 2001 Sep 21;106(6):647-50
pubmed: 11572770
Cell. 2010 Dec 10;143(6):924-37
pubmed: 21145459
Plant Cell. 2020 Apr;32(4):1218-1239
pubmed: 32024691
PLoS Genet. 2009 Oct;5(10):e1000702
pubmed: 19851446
Science. 2016 Feb 26;351(6276):939-43
pubmed: 26917763
Nature. 2013 Oct 31;502(7473):703-6
pubmed: 24107990
Nat Struct Mol Biol. 2014 Jan;21(1):64-72
pubmed: 24336224
J Cell Sci. 2002 Sep 15;115(Pt 18):3645-55
pubmed: 12186950
Elife. 2015 Mar 27;4:
pubmed: 25815584
Curr Opin Cell Biol. 2010 Jun;22(3):351-6
pubmed: 20392622
Genome Res. 2018 Apr;28(4):532-546
pubmed: 29530928
Curr Biol. 2013 Nov 4;23(21):2151-6
pubmed: 24139735
Cell. 2013 Jan 17;152(1-2):352-64
pubmed: 23313553
Genes Dev. 2015 Oct 15;29(20):2183-202
pubmed: 26494791
Genes Dev. 2007 Sep 1;21(17):2220-33
pubmed: 17785529
Genetics. 2015 May;200(1):35-45
pubmed: 25711279
Genes Dev. 2005 Nov 15;19(22):2727-43
pubmed: 16291646
Chromosoma. 2006 Jun;115(3):175-94
pubmed: 16555016
Genome Res. 2018 Apr;28(4):519-531
pubmed: 29530927
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2437-2442
pubmed: 29463699
BMC Genomics. 2018 Apr 4;19(1):234
pubmed: 29618320
Plant J. 2018 Jan;93(1):17-33
pubmed: 29078019
Nat Protoc. 2008;3(1):41-50
pubmed: 18193020
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Nature. 2014 Jul 31;511(7511):551-6
pubmed: 25043020
Chromosoma. 2016 Jun;125(2):287-300
pubmed: 26753761
PLoS Genet. 2012 Feb;8(2):e1002507
pubmed: 22319460
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12231-12236
pubmed: 29087335
Genome Biol. 2017 May 3;18(1):75
pubmed: 28464948
Genome Res. 2006 Jan;16(1):106-14
pubmed: 16344568
Cell. 2014 Jul 3;158(1):98-109
pubmed: 24995981
Elife. 2018 Mar 09;7:
pubmed: 29521627
Genetics. 2019 Nov;213(3):771-787
pubmed: 31527048
Chromosome Res. 2001;9(2):121-8
pubmed: 11321367
G3 (Bethesda). 2015 Jan 13;5(3):385-98
pubmed: 25585881
J Exp Bot. 2003 Jan;54(380):1-10
pubmed: 12456750
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4713-8
pubmed: 25825745
Dev Cell. 2014 Nov 24;31(4):487-502
pubmed: 25446517
PLoS Genet. 2015 Jul 16;11(7):e1005372
pubmed: 26182244
J Cell Sci. 2001 Dec;114(Pt 23):4207-17
pubmed: 11739653
Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3913-8
pubmed: 17360452
Chromosome Res. 1996 Nov;4(7):507-16
pubmed: 8939362
Elife. 2017 Jan 03;6:
pubmed: 28045371
Nat Commun. 2019 Feb 15;10(1):785
pubmed: 30770831
Cytogenet Genome Res. 2010 Jul;129(1-3):143-53
pubmed: 20628250
PLoS Genet. 2016 Jul 14;12(7):e1006179
pubmed: 27415776
Genome Biol. 2006;7(10):R100
pubmed: 17076895