Identification of type 2 diabetes loci in 433,540 East Asian individuals.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
06 2020
Historique:
received: 24 06 2019
accepted: 02 03 2020
pubmed: 6 6 2020
medline: 10 7 2020
entrez: 6 6 2020
Statut: ppublish

Résumé

Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)

Identifiants

pubmed: 32499647
doi: 10.1038/s41586-020-2263-3
pii: 10.1038/s41586-020-2263-3
pmc: PMC7292783
mid: NIHMS1570876
doi:

Substances chimiques

ANK1 protein, human 0
Ankyrins 0
Eye Proteins 0
GDAP protein 0
Homeodomain Proteins 0
Nerve Tissue Proteins 0
Nkx6-3 protein, human 0
RNA, Messenger 0
Transcription Factors 0
transcription factor PTF1 0
ALDH2 protein, human EC 1.2.1.3
Aldehyde Dehydrogenase, Mitochondrial EC 1.2.1.3

Types de publication

Journal Article Meta-Analysis Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

240-245

Subventions

Organisme : NHLBI NIH HHS
ID : N01HC95160
Pays : United States
Organisme : Wellcome Trust
ID : 212946/Z/18/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12026/2
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : N01HC95169
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK072193
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95164
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00017/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U137686851
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK078150
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK093757
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK080720
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001079
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD030880
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK105556
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA144034
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL142302
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK104371
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95162
Pays : United States
Organisme : NCRR NIH HHS
ID : P20 RR020649
Pays : United States
Organisme : FIC NIH HHS
ID : R01 TW005596
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK062370
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95168
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK105535
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL108427
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA182876
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK063491
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA064277
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK066358
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA124558
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95165
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95161
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001420
Pays : United States
Organisme : FIC NIH HHS
ID : D43 TW009077
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK062370
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK105554
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007092
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL085144
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95167
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL069768
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_13049
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : P30 DK056350
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK020572
Pays : United States
Organisme : FIC NIH HHS
ID : R01 TW008288
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR000040
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG061351
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_14135
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : N01HC95166
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK105561
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001881
Pays : United States
Organisme : Wellcome Trust
ID : 200837/Z/16/Z
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : UM1 CA182910
Pays : United States
Organisme : FIC NIH HHS
ID : R01 TW006207
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR003098
Pays : United States
Organisme : NCI NIH HHS
ID : UM1 CA182876
Pays : United States

Références

Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).
pubmed: 30297969 pmcid: 6287706 doi: 10.1038/s41588-018-0241-6
Suzuki, K. et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat. Genet. 51, 379–386 (2019).
pubmed: 30718926 doi: 10.1038/s41588-018-0332-4
Moon, Y. S. et al. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol. Cell. Biol. 22, 5585–5592 (2002).
pubmed: 12101250 pmcid: 133956 doi: 10.1128/MCB.22.15.5585-5592.2002
van de Bunt, M. et al. The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One 8, e55272 (2013).
pubmed: 23372846 pmcid: 3555946 doi: 10.1371/journal.pone.0055272
Scott, L. J. et al. The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat. Commun. 7, 11764 (2016).
pubmed: 27353450 pmcid: 4931250 doi: 10.1038/ncomms11764
Civelek, M. et al. Genetic regulation of adipose gene expression and cardio-metabolic traits. Am. J. Hum. Genet. 100, 428–443 (2017).
pubmed: 28257690 pmcid: 5339333 doi: 10.1016/j.ajhg.2017.01.027
Stumvoll, M., Goldstein, B. J. & van Haeften, T. W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333–1346 (2005).
doi: 10.1016/S0140-6736(05)61032-X pubmed: 15823385
Cho, Y. S. et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 44, 67–72 (2011).
pubmed: 22158537 pmcid: 3582398 doi: 10.1038/ng.1019
Huxley, R. et al. Ethnic comparisons of the cross-sectional relationships between measures of body size with diabetes and hypertension. Obes. Rev. 9 (Suppl. 1), 53–61 (2008).
pubmed: 18307700 doi: 10.1111/j.1467-789X.2007.00439.x
Lassiter, D. G., Sjögren, R. J. O., Gabriel, B. M., Krook, A. & Zierath, J. R. AMPK activation negatively regulates GDAP1, which influences metabolic processes and circadian gene expression in skeletal muscle. Mol. Metab. 16, 12–23 (2018).
pubmed: 30093355 pmcid: 6157647 doi: 10.1016/j.molmet.2018.07.004
Hoang, C. Q. et al. Transcriptional maintenance of pancreatic acinar identity, differentiation, and homeostasis by PTF1A. Mol. Cell. Biol. 36, 3033–3047 (2016).
pubmed: 27697859 pmcid: 5126291 doi: 10.1128/MCB.00358-16
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
pubmed: 22426310 pmcid: 3593158 doi: 10.1038/ng.2213
Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).
pubmed: 27398621 pmcid: 5034897 doi: 10.1038/nature18642
Kwak, S. H. et al. Nonsynonymous variants in PAX4 and GLP1R are associated with type 2 diabetes in an East Asian population. Diabetes 67, 1892–1902 (2018).
pubmed: 29941447 doi: 10.2337/db18-0361
Klok, M. D., Jakobsdottir, S. & Drent, M. L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes. Rev. 8, 21–34 (2007).
pubmed: 17212793 doi: 10.1111/j.1467-789X.2006.00270.x
Rasmussen-Torvik, L. J. et al. Associations of body mass index and insulin resistance with leptin, adiponectin, and the leptin-to-adiponectin ratio across ethnic groups: the Multi-Ethnic Study of Atherosclerosis (MESA). Ann. Epidemiol. 22, 705–709 (2012).
pubmed: 22929534 pmcid: 3459265 doi: 10.1016/j.annepidem.2012.07.011
Imamura, M. et al. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nat. Commun. 7, 10531 (2016).
pubmed: 26818947 pmcid: 4738362 doi: 10.1038/ncomms10531
van de Bunt, M. et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 11, e1005694 (2015).
pubmed: 26624892 pmcid: 4666611 doi: 10.1371/journal.pgen.1005694
Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl Acad. Sci. USA 114, 2301–2306 (2017).
pubmed: 28193859 doi: 10.1073/pnas.1621192114 pmcid: 5338551
Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at type 2 diabetes susceptibility loci. eLife 7, e31977 (2018).
pubmed: 29412141 pmcid: 5828664 doi: 10.7554/eLife.31977
Henseleit, K. D. et al. NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. Development 132, 3139–3149 (2005).
pubmed: 15944193 doi: 10.1242/dev.01875
Yan, R. et al. A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene. Sci. Rep. 6, 25105 (2016).
pubmed: 27121283 pmcid: 4848520 doi: 10.1038/srep25105
Wen, W. et al. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum. Mol. Genet. 23, 5492–5504 (2014).
pubmed: 24861553 pmcid: 4168820 doi: 10.1093/hmg/ddu248
Akiyama, M. et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 49, 1458–1467 (2017).
pubmed: 28892062 doi: 10.1038/ng.3951
Prokopenko, I. et al. A central role for GRB10 in regulation of islet function in man. PLoS Genet. 10, e1004235 (2014).
pubmed: 24699409 pmcid: 3974640 doi: 10.1371/journal.pgen.1004235
Hartiala, J. A. et al. Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nat. Commun. 7, 10558 (2016).
pubmed: 26822151 pmcid: 4740183 doi: 10.1038/ncomms10558
Okada, Y. et al. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. Nat. Commun. 9, 1631 (2018).
pubmed: 29691385 pmcid: 5915442 doi: 10.1038/s41467-018-03274-0
Xu, F. et al. ALDH2 genetic polymorphism and the risk of type II diabetes mellitus in CAD patients. Hypertens. Res. 33, 49–55 (2010).
pubmed: 19876063 doi: 10.1038/hr.2009.178
Kato, N. et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat. Genet. 43, 531–538 (2011).
pubmed: 21572416 pmcid: 3158568 doi: 10.1038/ng.834
Takeuchi, F. et al. Confirmation of ALDH2 as a major locus of drinking behavior and of its variants regulating multiple metabolic phenotypes in a Japanese population. Circ. J. 75, 911–918 (2011).
pubmed: 21372407 doi: 10.1253/circj.CJ-10-0774
Schrieks, I. C., Heil, A. L., Hendriks, H. F., Mukamal, K. J. & Beulens, J. W. The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and meta-analysis of intervention studies. Diabetes Care 38, 723–732 (2015).
pubmed: 25805864 doi: 10.2337/dc14-1556
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
pubmed: 27535533 pmcid: 5018207 doi: 10.1038/nature19057
Puig, M. et al. Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript. PLoS Genet. 11, e1005495 (2015).
pubmed: 26427027 pmcid: 4591017 doi: 10.1371/journal.pgen.1005495
Iype, T. et al. The transcriptional repressor Nkx6.1 also functions as a deoxyribonucleic acid context-dependent transcriptional activator during pancreatic beta-cell differentiation: evidence for feedback activation of the nkx6.1 gene by Nkx6.1. Mol. Endocrinol. 18, 1363–1375 (2004).
pubmed: 15056733 doi: 10.1210/me.2004-0006
Taylor, B. L., Liu, F. F. & Sander, M. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Rep. 4, 1262–1275 (2013).
pubmed: 24035389 pmcid: 4058003 doi: 10.1016/j.celrep.2013.08.010
Spracklen, C. N. et al. Identification and functional analysis of glycemic trait loci in the China Health and Nutrition Survey. PLoS Genet. 14, e1007275 (2018).
pubmed: 29621232 pmcid: 5886383 doi: 10.1371/journal.pgen.1007275
Accelerating Medicines Partnership. Type 2 Diabetes Knowledge Portal http://www.type2diabetesgenetics.org/home/portalHome (2019).
Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).
pubmed: 29403010 doi: 10.1038/s41588-018-0047-6
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743 pmcid: 6786975 doi: 10.1038/s41586-018-0579-z
Kameswaran, V. et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 19, 135–145 (2014).
pubmed: 24374217 doi: 10.1016/j.cmet.2013.11.016
You, L. et al. Downregulation of long noncoding RNA Meg3 affects insulin synthesis and secretion in mouse pancreatic beta cells. J. Cell. Physiol. 231, 852–862 (2016).
pubmed: 26313443 doi: 10.1002/jcp.25175
Wang, Y. et al. Overexpression of Pref-1 in pancreatic islet β-cells in mice causes hyperinsulinemia with increased islet mass and insulin secretion. Biochem. Biophys. Res. Commun. 461, 630–635 (2015).
pubmed: 25918019 pmcid: 4439292 doi: 10.1016/j.bbrc.2015.04.078
Rhee, M. et al. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci. Rep. 6, 23960 (2016).
pubmed: 27044861 pmcid: 4820710 doi: 10.1038/srep23960
Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381–386 (2015).
pubmed: 25751624 pmcid: 4380767 doi: 10.1038/ng.3245
Chen, Y. et al. MicroRNA-17-92 cluster regulates pancreatic beta-cell proliferation and adaptation. Mol. Cell. Endocrinol. 437, 213–223 (2016).
pubmed: 27568466 doi: 10.1016/j.mce.2016.08.037
Dou, L. et al. MiR-19a mediates gluconeogenesis by targeting PTEN in hepatocytes. Mol. Med. Rep. 17, 3967–3971 (2018).
pubmed: 29257352
Chen, Z. et al. Hepatocyte TRAF3 promotes insulin resistance and type 2 diabetes in mice with obesity. Mol. Metab. 4, 951–960 (2015).
pubmed: 26909311 pmcid: 4731737 doi: 10.1016/j.molmet.2015.09.013
Liu, F., Cheng, L., Xu, J., Guo, F. & Chen, W. miR-17-92 functions as an oncogene and modulates NF-κB signaling by targeting TRAF3 in MGC-803 human gastric cancer cells. Int. J. Oncol. 53, 2241–2257 (2018).
pubmed: 30226589
Ma, R. C. & Chan, J. C. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann. NY Acad. Sci. 1281, 64–91 (2013).
pubmed: 23551121 doi: 10.1111/nyas.12098
Zhu, Y. et al. Racial/ethnic disparities in the prevalence of diabetes and prediabetes by BMI: patient outcomes research to advance learning (PORTAL) multisite cohort of adults in the U.S. Diabetes Care 42, 2211–2219 (2019).
pubmed: 31537541 doi: 10.2337/dc19-0532 pmcid: 6868463
Kim, Y., Han, B. G. & the KoGES Group. Cohort profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 46, e20 (2017).
pubmed: 27085081 doi: 10.1093/ije/dyv316
Moon, S. et al. The Korea Biobank Array: design and identification of coding variants associated with blood biochemical traits. Sci. Rep. 9, 1382 (2019).
pubmed: 30718733 pmcid: 6361960 doi: 10.1038/s41598-018-37832-9
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
pubmed: 26432245 doi: 10.1038/nature15393
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
pubmed: 27571263 pmcid: 5157836 doi: 10.1038/ng.3656
Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 (Bethesda) 1, 457–470 (2011).
doi: 10.1534/g3.111.001198
Ma, C., Blackwell, T., Boehnke, M. & Scott, L. J. Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants. Genet. Epidemiol. 37, 539–550 (2013).
pubmed: 23788246 pmcid: 4049324 doi: 10.1002/gepi.21742
Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).
pubmed: 25642633 pmcid: 4342297 doi: 10.1038/ng.3190
Cook, J. P., Mahajan, A. & Morris, A. P. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes. Eur. J. Hum. Genet. 25, 240–245 (2017).
pubmed: 27848946 doi: 10.1038/ejhg.2016.150
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).
doi: 10.1111/j.0006-341X.1999.00997.x pubmed: 11315092
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Magi, R., Lindgren, C. M. & Morris, A. P. Meta-analysis of sex-specific genome-wide association studies. Genet. Epidemiol. 34, 846–853 (2010).
pubmed: 21104887 pmcid: 3410525 doi: 10.1002/gepi.20540
Mägi, R. & Morris, A. P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11, 288 (2010).
pubmed: 20509871 pmcid: 2893603 doi: 10.1186/1471-2105-11-288
Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).
pubmed: 28566273 pmcid: 5652602 doi: 10.2337/db16-1253
Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).
pubmed: 21378990 pmcid: 3119261 doi: 10.1038/ng.784
Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).
pubmed: 25673412 pmcid: 4338562 doi: 10.1038/nature14132
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).
pubmed: 30124842 pmcid: 6488973 doi: 10.1093/hmg/ddy271
Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
pubmed: 24097068 pmcid: 3838666 doi: 10.1038/ng.2797
Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).
pubmed: 20081858 pmcid: 3018764 doi: 10.1038/ng.520
Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148 (2010).
pubmed: 20081857 pmcid: 2922003 doi: 10.1038/ng.521
Strawbridge, R. J. et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60, 2624–2634 (2011).
pubmed: 21873549 pmcid: 3178302 doi: 10.2337/db11-0415
Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).
pubmed: 22581228 pmcid: 3613127 doi: 10.1038/ng.2274
Wheeler, E. et al. Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med. 14, e1002383 (2017).
pubmed: 28898252 pmcid: 5595282 doi: 10.1371/journal.pmed.1002383
Spracklen, C. N. et al. Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum. Mol. Genet. 27, 1122 (2018).
pubmed: 29351605 pmcid: 6790552 doi: 10.1093/hmg/ddx439
Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
pubmed: 25826379 pmcid: 4380465 doi: 10.1371/journal.pmed.1001779
Ehret, G. B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).
pubmed: 21909115 doi: 10.1038/nature10405
Gamazon, E. R. et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat. Genet. 50, 956–967 (2018).
pubmed: 29955180 pmcid: 6248311 doi: 10.1038/s41588-018-0154-4
Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. Preprint at bioRxiv  https://doi.org/10.1101/447367  (2018).
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Ezzat, S. et al. The cancer-associated FGFR4-G388R polymorphism enhances pancreatic insulin secretion and modifies the risk of diabetes. Cell Metab. 17, 929–940 (2013).
pubmed: 23747250 pmcid: 4005358 doi: 10.1016/j.cmet.2013.05.002
Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
pubmed: 25693563 pmcid: 4530010 doi: 10.1038/nature14248
Miyazaki, J. et al. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127, 126–132 (1990).
pubmed: 2163307 doi: 10.1210/endo-127-1-126
Fogarty, M. P., Cannon, M. E., Vadlamudi, S., Gaulton, K. J. & Mohlke, K. L. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus. PLoS Genet. 10, e1004633 (2014).
pubmed: 25211022 pmcid: 4161327 doi: 10.1371/journal.pgen.1004633

Auteurs

Cassandra N Spracklen (CN)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.

Momoko Horikoshi (M)

Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan.

Young Jin Kim (YJ)

Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea.

Kuang Lin (K)

Nuffield Department of Population Health, University of Oxford, Oxford, UK.

Fiona Bragg (F)

Nuffield Department of Population Health, University of Oxford, Oxford, UK.

Sanghoon Moon (S)

Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea.

Ken Suzuki (K)

Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan.
Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan.
Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.

Claudia H T Tam (CHT)

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China.

Yasuharu Tabara (Y)

Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Soo-Heon Kwak (SH)

Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.

Fumihiko Takeuchi (F)

Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.

Jirong Long (J)

Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Victor J Y Lim (VJY)

Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.

Jin-Fang Chai (JF)

Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.

Chien-Hsiun Chen (CH)

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.

Masahiro Nakatochi (M)

Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Jie Yao (J)

The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA.

Hyeok Sun Choi (HS)

Biomedical Science, Hallym University, Chuncheon, South Korea.

Apoorva K Iyengar (AK)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Hannah J Perrin (HJ)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Sarah M Brotman (SM)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Martijn van de Bunt (M)

Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

Anna L Gloyn (AL)

Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK.
Stanford University, Stanford, CA, USA.

Jennifer E Below (JE)

Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Michael Boehnke (M)

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

Donald W Bowden (DW)

Center for Genomics and Personalized Medicine Research, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.
Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.

John C Chambers (JC)

Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK.
Imperial College Healthcare NHS Trust, Imperial College London, London, UK.
MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.

Anubha Mahajan (A)

Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
Genentech, South San Francisco, CA, USA.

Mark I McCarthy (MI)

Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK.
Genentech, South San Francisco, CA, USA.

Maggie C Y Ng (MCY)

Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Center for Genomics and Personalized Medicine Research, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.

Lauren E Petty (LE)

Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Weihua Zhang (W)

Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK.

Andrew P Morris (AP)

Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
Department of Biostatistics, University of Liverpool, Liverpool, UK.
School of Biological Sciences, University of Manchester, Manchester, UK.

Linda S Adair (LS)

Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Masato Akiyama (M)

Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan.
Laboratory for Statistical Analysis, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan.
Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Zheng Bian (Z)

Chinese Academy of Medical Sciences, Beijing, China.

Juliana C N Chan (JCN)

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China.
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China.
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.

Li-Ching Chang (LC)

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.

Miao-Li Chee (ML)

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.

Yii-Der Ida Chen (YI)

The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA.

Yuan-Tsong Chen (YT)

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.

Zhengming Chen (Z)

Nuffield Department of Population Health, University of Oxford, Oxford, UK.

Lee-Ming Chuang (LM)

Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
Institute of Preventive Medicine, School of Public Health, National Taiwan University, Taipei, Taiwan.

Shufa Du (S)

Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Penny Gordon-Larsen (P)

Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Myron Gross (M)

Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.

Xiuqing Guo (X)

The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA.

Yu Guo (Y)

Chinese Academy of Medical Sciences, Beijing, China.

Sohee Han (S)

Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea.

Annie-Green Howard (AG)

Department of Biostatistics, Carolina Population Center, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Wei Huang (W)

Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China.

Yi-Jen Hung (YJ)

Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan.
School of Medicine, National Defense Medical Center, Taipei, Taiwan.

Mi Yeong Hwang (MY)

Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea.

Chii-Min Hwu (CM)

Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
School of Medicine, National Yang-Ming University, Taipei, Taiwan.

Sahoko Ichihara (S)

Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan.

Masato Isono (M)

Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.

Hye-Mi Jang (HM)

Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea.

Guozhi Jiang (G)

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China.

Jost B Jonas (JB)

Department of Ophthalmology, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany.

Yoichiro Kamatani (Y)

Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan.
Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.

Tomohiro Katsuya (T)

Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan.
Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.

Takahisa Kawaguchi (T)

Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Chiea-Chuen Khor (CC)

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.

Katsuhiko Kohara (K)

Department of Regional Resource Management, Ehime University Faculty of Collaborative Regional Innovation, Ehime, Japan.

Myung-Shik Lee (MS)

Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.

Nanette R Lee (NR)

Department of Anthropology, Sociology and History, University of San Carlos, Cebu City, Philippines.

Liming Li (L)

Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China.

Jianjun Liu (J)

Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.

Andrea O Luk (AO)

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China.

Jun Lv (J)

Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China.

Yukinori Okada (Y)

Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.
Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan.

Mark A Pereira (MA)

Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA.

Charumathi Sabanayagam (C)

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.
Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.

Jinxiu Shi (J)

Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.

Dong Mun Shin (DM)

Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea.

Wing Yee So (WY)

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China.

Atsushi Takahashi (A)

Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan.
Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan.

Brian Tomlinson (B)

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
Faculty of Medicine, Macau University of Science and Technology, Macau, China.

Fuu-Jen Tsai (FJ)

Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan.

Rob M van Dam (RM)

Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.

Yong-Bing Xiang (YB)

State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Ken Yamamoto (K)

Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan.

Toshimasa Yamauchi (T)

Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Kyungheon Yoon (K)

Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea.

Canqing Yu (C)

Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China.

Jian-Min Yuan (JM)

Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.

Liang Zhang (L)

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.

Wei Zheng (W)

Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Michiya Igase (M)

Department of Anti-aging Medicine, Ehime University Graduate School of Medicine, Ehime, Japan.

Yoon Shin Cho (YS)

Biomedical Science, Hallym University, Chuncheon, South Korea.

Jerome I Rotter (JI)

The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA.

Ya-Xing Wang (YX)

Beijing Institute of Ophthalmology, Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China.

Wayne H H Sheu (WHH)

School of Medicine, National Defense Medical Center, Taipei, Taiwan.
School of Medicine, National Yang-Ming University, Taipei, Taiwan.
Division of Endocrinology and Metabolism, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.

Mitsuhiro Yokota (M)

Kurume University School of Medicine, Kurume, Japan.

Jer-Yuarn Wu (JY)

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.

Ching-Yu Cheng (CY)

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.
Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.

Tien-Yin Wong (TY)

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.
Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.

Xiao-Ou Shu (XO)

Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Norihiro Kato (N)

Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.

Kyong-Soo Park (KS)

Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.
Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.
Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.

E-Shyong Tai (ES)

Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.
Duke-NUS Medical School, Singapore, Singapore.

Fumihiko Matsuda (F)

Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Woon-Puay Koh (WP)

Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore.

Ronald C W Ma (RCW)

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China.
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China.
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.

Shiro Maeda (S)

Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan.
Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan.

Iona Y Millwood (IY)

Nuffield Department of Population Health, University of Oxford, Oxford, UK.
Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK.

Juyoung Lee (J)

Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea.

Takashi Kadowaki (T)

Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. kadowaki-3im@h.u-tokyo.ac.jp.

Robin G Walters (RG)

Nuffield Department of Population Health, University of Oxford, Oxford, UK. robin.walters@ndph.ox.ac.uk.
Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK. robin.walters@ndph.ox.ac.uk.

Bong-Jo Kim (BJ)

Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea. kbj6181@korea.kr.

Karen L Mohlke (KL)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. mohlke@med.unc.edu.

Xueling Sim (X)

Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore. ephsx@nus.edu.sg.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH