Identification of type 2 diabetes loci in 433,540 East Asian individuals.
Aldehyde Dehydrogenase, Mitochondrial
/ genetics
Alleles
Ankyrins
/ genetics
Asian People
/ genetics
Body Mass Index
Case-Control Studies
Diabetes Mellitus, Type 2
/ genetics
Europe
/ ethnology
Eye Proteins
/ genetics
Asia, Eastern
/ ethnology
Female
Genetic Predisposition to Disease
Genome-Wide Association Study
Homeodomain Proteins
/ genetics
Humans
Male
Nerve Tissue Proteins
/ genetics
RNA, Messenger
/ analysis
Transcription Factors
/ genetics
Transcription, Genetic
Homeobox Protein SIX3
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
24
06
2019
accepted:
02
03
2020
pubmed:
6
6
2020
medline:
10
7
2020
entrez:
6
6
2020
Statut:
ppublish
Résumé
Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)
Identifiants
pubmed: 32499647
doi: 10.1038/s41586-020-2263-3
pii: 10.1038/s41586-020-2263-3
pmc: PMC7292783
mid: NIHMS1570876
doi:
Substances chimiques
ANK1 protein, human
0
Ankyrins
0
Eye Proteins
0
GDAP protein
0
Homeodomain Proteins
0
Nerve Tissue Proteins
0
Nkx6-3 protein, human
0
RNA, Messenger
0
Transcription Factors
0
transcription factor PTF1
0
ALDH2 protein, human
EC 1.2.1.3
Aldehyde Dehydrogenase, Mitochondrial
EC 1.2.1.3
Types de publication
Journal Article
Meta-Analysis
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
240-245Subventions
Organisme : NHLBI NIH HHS
ID : N01HC95160
Pays : United States
Organisme : Wellcome Trust
ID : 212946/Z/18/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12026/2
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : N01HC95169
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK072193
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95164
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00017/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U137686851
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK078150
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK093757
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK080720
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001079
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD030880
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK105556
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA144034
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL142302
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK104371
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95162
Pays : United States
Organisme : NCRR NIH HHS
ID : P20 RR020649
Pays : United States
Organisme : FIC NIH HHS
ID : R01 TW005596
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK062370
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95168
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK105535
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL108427
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA182876
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK063491
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA064277
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK066358
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA124558
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95165
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95161
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001420
Pays : United States
Organisme : FIC NIH HHS
ID : D43 TW009077
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK062370
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK105554
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007092
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL085144
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95167
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL069768
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_13049
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : P30 DK056350
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK020572
Pays : United States
Organisme : FIC NIH HHS
ID : R01 TW008288
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR000040
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG061351
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_14135
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : N01HC95166
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK105561
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001881
Pays : United States
Organisme : Wellcome Trust
ID : 200837/Z/16/Z
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : UM1 CA182910
Pays : United States
Organisme : FIC NIH HHS
ID : R01 TW006207
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR003098
Pays : United States
Organisme : NCI NIH HHS
ID : UM1 CA182876
Pays : United States
Références
Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).
pubmed: 30297969
pmcid: 6287706
doi: 10.1038/s41588-018-0241-6
Suzuki, K. et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat. Genet. 51, 379–386 (2019).
pubmed: 30718926
doi: 10.1038/s41588-018-0332-4
Moon, Y. S. et al. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol. Cell. Biol. 22, 5585–5592 (2002).
pubmed: 12101250
pmcid: 133956
doi: 10.1128/MCB.22.15.5585-5592.2002
van de Bunt, M. et al. The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One 8, e55272 (2013).
pubmed: 23372846
pmcid: 3555946
doi: 10.1371/journal.pone.0055272
Scott, L. J. et al. The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat. Commun. 7, 11764 (2016).
pubmed: 27353450
pmcid: 4931250
doi: 10.1038/ncomms11764
Civelek, M. et al. Genetic regulation of adipose gene expression and cardio-metabolic traits. Am. J. Hum. Genet. 100, 428–443 (2017).
pubmed: 28257690
pmcid: 5339333
doi: 10.1016/j.ajhg.2017.01.027
Stumvoll, M., Goldstein, B. J. & van Haeften, T. W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333–1346 (2005).
doi: 10.1016/S0140-6736(05)61032-X
pubmed: 15823385
Cho, Y. S. et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 44, 67–72 (2011).
pubmed: 22158537
pmcid: 3582398
doi: 10.1038/ng.1019
Huxley, R. et al. Ethnic comparisons of the cross-sectional relationships between measures of body size with diabetes and hypertension. Obes. Rev. 9 (Suppl. 1), 53–61 (2008).
pubmed: 18307700
doi: 10.1111/j.1467-789X.2007.00439.x
Lassiter, D. G., Sjögren, R. J. O., Gabriel, B. M., Krook, A. & Zierath, J. R. AMPK activation negatively regulates GDAP1, which influences metabolic processes and circadian gene expression in skeletal muscle. Mol. Metab. 16, 12–23 (2018).
pubmed: 30093355
pmcid: 6157647
doi: 10.1016/j.molmet.2018.07.004
Hoang, C. Q. et al. Transcriptional maintenance of pancreatic acinar identity, differentiation, and homeostasis by PTF1A. Mol. Cell. Biol. 36, 3033–3047 (2016).
pubmed: 27697859
pmcid: 5126291
doi: 10.1128/MCB.00358-16
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
pubmed: 22426310
pmcid: 3593158
doi: 10.1038/ng.2213
Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).
pubmed: 27398621
pmcid: 5034897
doi: 10.1038/nature18642
Kwak, S. H. et al. Nonsynonymous variants in PAX4 and GLP1R are associated with type 2 diabetes in an East Asian population. Diabetes 67, 1892–1902 (2018).
pubmed: 29941447
doi: 10.2337/db18-0361
Klok, M. D., Jakobsdottir, S. & Drent, M. L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes. Rev. 8, 21–34 (2007).
pubmed: 17212793
doi: 10.1111/j.1467-789X.2006.00270.x
Rasmussen-Torvik, L. J. et al. Associations of body mass index and insulin resistance with leptin, adiponectin, and the leptin-to-adiponectin ratio across ethnic groups: the Multi-Ethnic Study of Atherosclerosis (MESA). Ann. Epidemiol. 22, 705–709 (2012).
pubmed: 22929534
pmcid: 3459265
doi: 10.1016/j.annepidem.2012.07.011
Imamura, M. et al. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nat. Commun. 7, 10531 (2016).
pubmed: 26818947
pmcid: 4738362
doi: 10.1038/ncomms10531
van de Bunt, M. et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 11, e1005694 (2015).
pubmed: 26624892
pmcid: 4666611
doi: 10.1371/journal.pgen.1005694
Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl Acad. Sci. USA 114, 2301–2306 (2017).
pubmed: 28193859
doi: 10.1073/pnas.1621192114
pmcid: 5338551
Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at type 2 diabetes susceptibility loci. eLife 7, e31977 (2018).
pubmed: 29412141
pmcid: 5828664
doi: 10.7554/eLife.31977
Henseleit, K. D. et al. NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. Development 132, 3139–3149 (2005).
pubmed: 15944193
doi: 10.1242/dev.01875
Yan, R. et al. A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene. Sci. Rep. 6, 25105 (2016).
pubmed: 27121283
pmcid: 4848520
doi: 10.1038/srep25105
Wen, W. et al. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum. Mol. Genet. 23, 5492–5504 (2014).
pubmed: 24861553
pmcid: 4168820
doi: 10.1093/hmg/ddu248
Akiyama, M. et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 49, 1458–1467 (2017).
pubmed: 28892062
doi: 10.1038/ng.3951
Prokopenko, I. et al. A central role for GRB10 in regulation of islet function in man. PLoS Genet. 10, e1004235 (2014).
pubmed: 24699409
pmcid: 3974640
doi: 10.1371/journal.pgen.1004235
Hartiala, J. A. et al. Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nat. Commun. 7, 10558 (2016).
pubmed: 26822151
pmcid: 4740183
doi: 10.1038/ncomms10558
Okada, Y. et al. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. Nat. Commun. 9, 1631 (2018).
pubmed: 29691385
pmcid: 5915442
doi: 10.1038/s41467-018-03274-0
Xu, F. et al. ALDH2 genetic polymorphism and the risk of type II diabetes mellitus in CAD patients. Hypertens. Res. 33, 49–55 (2010).
pubmed: 19876063
doi: 10.1038/hr.2009.178
Kato, N. et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat. Genet. 43, 531–538 (2011).
pubmed: 21572416
pmcid: 3158568
doi: 10.1038/ng.834
Takeuchi, F. et al. Confirmation of ALDH2 as a major locus of drinking behavior and of its variants regulating multiple metabolic phenotypes in a Japanese population. Circ. J. 75, 911–918 (2011).
pubmed: 21372407
doi: 10.1253/circj.CJ-10-0774
Schrieks, I. C., Heil, A. L., Hendriks, H. F., Mukamal, K. J. & Beulens, J. W. The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and meta-analysis of intervention studies. Diabetes Care 38, 723–732 (2015).
pubmed: 25805864
doi: 10.2337/dc14-1556
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
pubmed: 27535533
pmcid: 5018207
doi: 10.1038/nature19057
Puig, M. et al. Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript. PLoS Genet. 11, e1005495 (2015).
pubmed: 26427027
pmcid: 4591017
doi: 10.1371/journal.pgen.1005495
Iype, T. et al. The transcriptional repressor Nkx6.1 also functions as a deoxyribonucleic acid context-dependent transcriptional activator during pancreatic beta-cell differentiation: evidence for feedback activation of the nkx6.1 gene by Nkx6.1. Mol. Endocrinol. 18, 1363–1375 (2004).
pubmed: 15056733
doi: 10.1210/me.2004-0006
Taylor, B. L., Liu, F. F. & Sander, M. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Rep. 4, 1262–1275 (2013).
pubmed: 24035389
pmcid: 4058003
doi: 10.1016/j.celrep.2013.08.010
Spracklen, C. N. et al. Identification and functional analysis of glycemic trait loci in the China Health and Nutrition Survey. PLoS Genet. 14, e1007275 (2018).
pubmed: 29621232
pmcid: 5886383
doi: 10.1371/journal.pgen.1007275
Accelerating Medicines Partnership. Type 2 Diabetes Knowledge Portal http://www.type2diabetesgenetics.org/home/portalHome (2019).
Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).
pubmed: 29403010
doi: 10.1038/s41588-018-0047-6
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Kameswaran, V. et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 19, 135–145 (2014).
pubmed: 24374217
doi: 10.1016/j.cmet.2013.11.016
You, L. et al. Downregulation of long noncoding RNA Meg3 affects insulin synthesis and secretion in mouse pancreatic beta cells. J. Cell. Physiol. 231, 852–862 (2016).
pubmed: 26313443
doi: 10.1002/jcp.25175
Wang, Y. et al. Overexpression of Pref-1 in pancreatic islet β-cells in mice causes hyperinsulinemia with increased islet mass and insulin secretion. Biochem. Biophys. Res. Commun. 461, 630–635 (2015).
pubmed: 25918019
pmcid: 4439292
doi: 10.1016/j.bbrc.2015.04.078
Rhee, M. et al. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci. Rep. 6, 23960 (2016).
pubmed: 27044861
pmcid: 4820710
doi: 10.1038/srep23960
Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381–386 (2015).
pubmed: 25751624
pmcid: 4380767
doi: 10.1038/ng.3245
Chen, Y. et al. MicroRNA-17-92 cluster regulates pancreatic beta-cell proliferation and adaptation. Mol. Cell. Endocrinol. 437, 213–223 (2016).
pubmed: 27568466
doi: 10.1016/j.mce.2016.08.037
Dou, L. et al. MiR-19a mediates gluconeogenesis by targeting PTEN in hepatocytes. Mol. Med. Rep. 17, 3967–3971 (2018).
pubmed: 29257352
Chen, Z. et al. Hepatocyte TRAF3 promotes insulin resistance and type 2 diabetes in mice with obesity. Mol. Metab. 4, 951–960 (2015).
pubmed: 26909311
pmcid: 4731737
doi: 10.1016/j.molmet.2015.09.013
Liu, F., Cheng, L., Xu, J., Guo, F. & Chen, W. miR-17-92 functions as an oncogene and modulates NF-κB signaling by targeting TRAF3 in MGC-803 human gastric cancer cells. Int. J. Oncol. 53, 2241–2257 (2018).
pubmed: 30226589
Ma, R. C. & Chan, J. C. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann. NY Acad. Sci. 1281, 64–91 (2013).
pubmed: 23551121
doi: 10.1111/nyas.12098
Zhu, Y. et al. Racial/ethnic disparities in the prevalence of diabetes and prediabetes by BMI: patient outcomes research to advance learning (PORTAL) multisite cohort of adults in the U.S. Diabetes Care 42, 2211–2219 (2019).
pubmed: 31537541
doi: 10.2337/dc19-0532
pmcid: 6868463
Kim, Y., Han, B. G. & the KoGES Group. Cohort profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 46, e20 (2017).
pubmed: 27085081
doi: 10.1093/ije/dyv316
Moon, S. et al. The Korea Biobank Array: design and identification of coding variants associated with blood biochemical traits. Sci. Rep. 9, 1382 (2019).
pubmed: 30718733
pmcid: 6361960
doi: 10.1038/s41598-018-37832-9
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
pubmed: 26432245
doi: 10.1038/nature15393
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
pubmed: 27571263
pmcid: 5157836
doi: 10.1038/ng.3656
Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 (Bethesda) 1, 457–470 (2011).
doi: 10.1534/g3.111.001198
Ma, C., Blackwell, T., Boehnke, M. & Scott, L. J. Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants. Genet. Epidemiol. 37, 539–550 (2013).
pubmed: 23788246
pmcid: 4049324
doi: 10.1002/gepi.21742
Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).
pubmed: 25642633
pmcid: 4342297
doi: 10.1038/ng.3190
Cook, J. P., Mahajan, A. & Morris, A. P. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes. Eur. J. Hum. Genet. 25, 240–245 (2017).
pubmed: 27848946
doi: 10.1038/ejhg.2016.150
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).
doi: 10.1111/j.0006-341X.1999.00997.x
pubmed: 11315092
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630
pmcid: 4495769
doi: 10.1038/ng.3211
Magi, R., Lindgren, C. M. & Morris, A. P. Meta-analysis of sex-specific genome-wide association studies. Genet. Epidemiol. 34, 846–853 (2010).
pubmed: 21104887
pmcid: 3410525
doi: 10.1002/gepi.20540
Mägi, R. & Morris, A. P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11, 288 (2010).
pubmed: 20509871
pmcid: 2893603
doi: 10.1186/1471-2105-11-288
Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).
pubmed: 28566273
pmcid: 5652602
doi: 10.2337/db16-1253
Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).
pubmed: 21378990
pmcid: 3119261
doi: 10.1038/ng.784
Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).
pubmed: 25673412
pmcid: 4338562
doi: 10.1038/nature14132
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).
pubmed: 30124842
pmcid: 6488973
doi: 10.1093/hmg/ddy271
Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
pubmed: 24097068
pmcid: 3838666
doi: 10.1038/ng.2797
Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).
pubmed: 20081858
pmcid: 3018764
doi: 10.1038/ng.520
Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148 (2010).
pubmed: 20081857
pmcid: 2922003
doi: 10.1038/ng.521
Strawbridge, R. J. et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60, 2624–2634 (2011).
pubmed: 21873549
pmcid: 3178302
doi: 10.2337/db11-0415
Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).
pubmed: 22581228
pmcid: 3613127
doi: 10.1038/ng.2274
Wheeler, E. et al. Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med. 14, e1002383 (2017).
pubmed: 28898252
pmcid: 5595282
doi: 10.1371/journal.pmed.1002383
Spracklen, C. N. et al. Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum. Mol. Genet. 27, 1122 (2018).
pubmed: 29351605
pmcid: 6790552
doi: 10.1093/hmg/ddx439
Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
pubmed: 25826379
pmcid: 4380465
doi: 10.1371/journal.pmed.1001779
Ehret, G. B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).
pubmed: 21909115
doi: 10.1038/nature10405
Gamazon, E. R. et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat. Genet. 50, 956–967 (2018).
pubmed: 29955180
pmcid: 6248311
doi: 10.1038/s41588-018-0154-4
Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. Preprint at bioRxiv https://doi.org/10.1101/447367 (2018).
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Ezzat, S. et al. The cancer-associated FGFR4-G388R polymorphism enhances pancreatic insulin secretion and modifies the risk of diabetes. Cell Metab. 17, 929–940 (2013).
pubmed: 23747250
pmcid: 4005358
doi: 10.1016/j.cmet.2013.05.002
Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
pubmed: 25693563
pmcid: 4530010
doi: 10.1038/nature14248
Miyazaki, J. et al. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127, 126–132 (1990).
pubmed: 2163307
doi: 10.1210/endo-127-1-126
Fogarty, M. P., Cannon, M. E., Vadlamudi, S., Gaulton, K. J. & Mohlke, K. L. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus. PLoS Genet. 10, e1004633 (2014).
pubmed: 25211022
pmcid: 4161327
doi: 10.1371/journal.pgen.1004633