Molecular design of hypothalamus development.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
06 2020
Historique:
received: 09 06 2019
accepted: 05 03 2020
pubmed: 6 6 2020
medline: 10 7 2020
entrez: 6 6 2020
Statut: ppublish

Résumé

A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates

Identifiants

pubmed: 32499648
doi: 10.1038/s41586-020-2266-0
pii: 10.1038/s41586-020-2266-0
pmc: PMC7292733
mid: EMS85981
doi:

Substances chimiques

Nerve Tissue Proteins 0
Neuropeptides 0
Neurotransmitter Agents 0
Receptors, Immunologic 0
Transcription Factors 0
slit protein, vertebrate 0
Glutamic Acid 3KX376GY7L
gamma-Aminobutyric Acid 56-12-2
Dopamine VTD58H1Z2X

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

246-252

Subventions

Organisme : European Research Council
ID : 695136
Pays : International
Organisme : Austrian Science Fund FWF
ID : DOC 33
Pays : Austria

Références

Saper, C. B. & Lowell, B. B. The hypothalamus. Curr. Biol. 24, R1111–R1116 (2014).
pubmed: 25465326 doi: 10.1016/j.cub.2014.10.023
Dulac, C., O’Connell, L. A. & Wu, Z. Neural control of maternal and paternal behaviors. Science 345, 765–770 (2014).
pubmed: 25124430 pmcid: 4230532 doi: 10.1126/science.1253291
Xie, Y. & Dorsky, R. I. Development of the hypothalamus: conservation, modification and innovation. Development 144, 1588–1599 (2017).
pubmed: 28465334 pmcid: 5450842 doi: 10.1242/dev.139055
Romanov, R. A. et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat. Neurosci. 20, 176–188 (2017).
doi: 10.1038/nn.4462
Andrews, W. et al. The role of Slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Dev. Biol. 313, 648–658 (2008).
pubmed: 18054781 doi: 10.1016/j.ydbio.2007.10.052
Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).
pubmed: 29513653 pmcid: 6052457 doi: 10.1038/nature25999
Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).
pubmed: 19763105 pmcid: 2913577 doi: 10.1038/nrn2719
Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e1022 (2018).
pubmed: 30096314 pmcid: 6086934 doi: 10.1016/j.cell.2018.06.021
Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).
pubmed: 28166221 pmcid: 5323293 doi: 10.1038/nn.4495
Toda, C., Santoro, A., Kim, J. D. & Diano, S. POMC neurons: from birth to death. Annu. Rev. Physiol. 79, 209–236 (2017).
pubmed: 28192062 pmcid: 5669621 doi: 10.1146/annurev-physiol-022516-034110
Burbridge, S., Stewart, I. & Placzek, M. Development of the neuroendocrine hypothalamus. Compr. Physiol. 6, 623–643 (2016).
pubmed: 27065164 doi: 10.1002/cphy.c150023
Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).
pubmed: 30890159 pmcid: 6425583 doi: 10.1186/s13059-019-1663-x
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
pubmed: 6130801 pmcid: 6130801 doi: 10.1038/s41586-018-0414-6
Aujla, P. K., Naratadam, G. T., Xu, L. & Raetzman, L. T. Notch/Rbpjκ signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons. Development 140, 3511–3521 (2013).
pubmed: 23884446 pmcid: 3742139 doi: 10.1242/dev.098681
McNay, D. E., Pelling, M., Claxton, S., Guillemot, F. & Ang, S.-L. Mash1 is required for generic and subtype differentiation of hypothalamic neuroendocrine cells. Mol. Endocrinol. 20, 1623–1632 (2006).
pubmed: 16469766 doi: 10.1210/me.2005-0518
De Marco García, N. V., Karayannis, T. & Fishell, G. Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature 472, 351–355 (2011).
pubmed: 21460837 pmcid: 3641515 doi: 10.1038/nature09865
Cobos, I., Borello, U. & Rubenstein, J. L. Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron 54, 873–888 (2007).
pubmed: 17582329 pmcid: 4921237 doi: 10.1016/j.neuron.2007.05.024
Wamsley, B. & Fishell, G. Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat. Rev. Neurosci. 18, 299–309 (2017).
pubmed: 28381833 doi: 10.1038/nrn.2017.30
Gerstner, J. R. & Landry, C. F. Expression of the transcriptional coactivator CITED1 in the adult and developing murine brain. Dev. Neurosci. 29, 203–212 (2007).
pubmed: 17047318 doi: 10.1159/000096389
Hökfelt, T., Meister, B., Melander, T. & Everitt, B. Coexistence of classical transmitters and peptides with special reference to the arcuate nucleus–median eminence complex. Adv. Biochem. Psychopharmacol. 43, 21–34 (1987).
pubmed: 2884817
Motoike, T. et al. Transient expression of neuropeptide W in postnatal mouse hypothalamus—a putative regulator of energy homeostasis. Neuroscience 301, 323–337 (2015).
pubmed: 26073698 doi: 10.1016/j.neuroscience.2015.06.014
Maejima, Y. et al. Oxytocinergic circuit from paraventricular and supraoptic nuclei to arcuate POMC neurons in hypothalamus. FEBS Lett. 588, 4404–4412 (2014).
pubmed: 25448678 doi: 10.1016/j.febslet.2014.10.010
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
pubmed: 5937676 pmcid: 5937676 doi: 10.1038/nmeth.4463
Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).
pubmed: 28622505 pmcid: 5536862 doi: 10.1016/j.cell.2017.05.038
Popadin, K. et al. Slightly deleterious genomic variants and transcriptome perturbations in Down syndrome embryonic selection. Genome Res. 28, 1–10 (2018).
pubmed: 29237728 pmcid: 5749173 doi: 10.1101/gr.228411.117
Cardenas, A. et al. Evolution of cortical neurogenesis in amniotes controlled by Robo signaling levels. Cell 174, 590–606.e521 (2018).
pubmed: 29961574 pmcid: 6063992 doi: 10.1016/j.cell.2018.06.007
Chédotal, A. & Richards, L. J. Wiring the brain: the biology of neuronal guidance. Cold Spring Harb. Perspect. Biol. 2, a001917 (2010).
pubmed: 20463002 pmcid: 2869517 doi: 10.1101/cshperspect.a001917
Arenas, E., Denham, M. & Villaescusa, J. C. How to make a midbrain dopaminergic neuron. Development 142, 1918–1936 (2015).
pubmed: 26015536 doi: 10.1242/dev.097394
Tritsch, N. X., Ding, J. B. & Sabatini, B. L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490, 262–266 (2012).
pubmed: 23034651 pmcid: 3944587 doi: 10.1038/nature11466
Matsushita, N. et al. Dynamics of tyrosine hydroxylase promoter activity during midbrain dopaminergic neuron development. J. Neurochem. 82, 295–304 (2002).
pubmed: 12124430 doi: 10.1046/j.1471-4159.2002.00972.x
Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).
pubmed: 11373681 doi: 10.1038/35078085
Kim, E. J., Ables, J. L., Dickel, L. K., Eisch, A. J. & Johnson, J. E. Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS One 6, e18472 (2011).
pubmed: 21483754 pmcid: 3069117 doi: 10.1371/journal.pone.0018472
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
doi: 10.1038/nn.2467
Shu, T., Butz, K. G., Plachez, C., Gronostajski, R. M. & Richards, L. J. Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice. J. Neurosci. 23, 203–212 (2003).
pubmed: 12514217 pmcid: 6742120 doi: 10.1523/JNEUROSCI.23-01-00203.2003
Bali, B., Erdélyi, F., Szabó, G. & Kovács, K. J. Visualization of stress-responsive inhibitory circuits in the GAD65-eGFP transgenic mice. Neurosci. Lett. 380, 60–65 (2005).
pubmed: 15854751 doi: 10.1016/j.neulet.2005.01.014
Tamamaki, N. et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 467, 60–79 (2003).
pubmed: 14574680 doi: 10.1002/cne.10905
Andrews, W. et al. Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133, 2243–2252 (2006).
pubmed: 16690755 doi: 10.1242/dev.02379
Plump, A. S. et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33, 219–232 (2002).
pubmed: 11804570 doi: 10.1016/S0896-6273(01)00586-4
Yang, L. et al. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development 133, 1575–1585 (2006).
pubmed: 16556916 pmcid: 5576437 doi: 10.1242/dev.02322
Yoshida, M. et al. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci. 29, 2259–2271 (2009).
pubmed: 19228979 pmcid: 6666325 doi: 10.1523/JNEUROSCI.5593-08.2009
Bäckman, C. M. et al. Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus. Genesis 44, 383–390 (2006).
pubmed: 16865686 doi: 10.1002/dvg.20228
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
pubmed: 4481139 pmcid: 4481139 doi: 10.1016/j.cell.2015.05.002
Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).
pubmed: 30902100 pmcid: 6431044 doi: 10.1186/s13059-019-1662-y
Petukhov, V. et al. dropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments. Genome Biol. 19, 78 (2018).
pubmed: 29921301 pmcid: 6010209 doi: 10.1186/s13059-018-1449-6
van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).
doi: 10.1038/nmeth.4437
Hinman, M. N. & Lou, H. Diverse molecular functions of Hu proteins. Cell. Mol. Life Sci. 65, 3168–3181 (2008).
pubmed: 18581050 pmcid: 2580827 doi: 10.1007/s00018-008-8252-6
Mili, S. & Steitz, J. A. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10, 1692–1694 (2004).
pubmed: 15388877 pmcid: 1370654 doi: 10.1261/rna.7151404
Yoo, S. & Blackshaw, S. Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog. Neurobiol. 170, 53–66 (2018).
pubmed: 29631023 pmcid: 6173995 doi: 10.1016/j.pneurobio.2018.04.001
Miranda-Angulo, A. L., Byerly, M. S., Mesa, J., Wang, H. & Blackshaw, S. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J. Comp. Neurol. 522, 876–899 (2014).
pubmed: 23939786 pmcid: 3947139 doi: 10.1002/cne.23451
Shimogori, T. et al. A genomic atlas of mouse hypothalamic development. Nat. Neurosci. 13, 767–775 (2010).
pubmed: 20436479 pmcid: 4067769 doi: 10.1038/nn.2545
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423 pmcid: 6927181 doi: 10.1186/s13059-019-1874-1
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
pubmed: 26653891 pmcid: 4676162 doi: 10.1186/s13059-015-0844-5
Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).
doi: 10.1126/science.aaa1934
Alpár, A., Benevento, M., Romanov, R. A., Hökfelt, T. & Harkany, T. Hypothalamic cell diversity: non-neuronal codes for long-distance volume transmission by neuropeptides. Curr. Opin. Neurobiol. 56, 16–23 (2019).
pubmed: 30471413 doi: 10.1016/j.conb.2018.10.012
Romanov, R. A., Alpár, A., Hökfelt, T. & Harkany, T. Unified classification of molecular, network, and endocrine features of hypothalamic neurons. Annu. Rev. Neurosci. 42, 1–26 (2019).
pubmed: 30735460 doi: 10.1146/annurev-neuro-070918-050414
Polański, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 964–965 (2020).
pubmed: 31400197
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. JOSS 3, 861 (2018).
doi: 10.21105/joss.00861
Johnson, J., Douze, M. & Jegou, H. Billion-scale similarity search with GPUs. IEEE Trans. Big Data https://doi.org/10.1109/TBDATA.2019.2921572 (2019).
Maneewongvatana, S. & Mount, D. in Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges Vol. 59 DIMACS Series in Discrete Mathematics and Theoretical Computer Science (eds. Goldwasser, M., Johnson, D. & McGeoch, C.) 105–123 (American Mathematical Society, 2002).
Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685–691 (2019).
pubmed: 31061482 pmcid: 6551256 doi: 10.1038/s41587-019-0113-3
Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887.e1817 (2019).
pubmed: 31178122 pmcid: 6716797 doi: 10.1016/j.cell.2019.05.006
Korsunsky, I. et al. Fast, sensitive, and accurate integration of single cell data with harmony. Nature Methods 16, 1289–1296 (2019).
pubmed: 31740819 pmcid: 6884693 doi: 10.1038/s41592-019-0619-0
Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).
pubmed: 29608177 pmcid: 6152897 doi: 10.1038/nbt.4091
Barkas, N. et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods 16, 695–698 (2019).
pubmed: 31308548 pmcid: 6684315 doi: 10.1038/s41592-019-0466-z
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).
pubmed: 6687398 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 1860–1872 (2015).
pubmed: 26430063 pmcid: 4665007 doi: 10.1101/gr.192237.115
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).
doi: 10.1038/nbt.4314
Crow, M., Paul, A., Ballouz, S., Huang, Z. J. & Gillis, J. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nat. Commun. 9, 884 (2018).
pubmed: 29491377 pmcid: 5830442 doi: 10.1038/s41467-018-03282-0
Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep. 18, 3227–3241 (2017). https://doi.org/10.1016/j.celrep.2017.03.004 .
doi: 10.1016/j.celrep.2017.03.004 pubmed: 5782816 pmcid: 5782816
Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).
pubmed: 6482113 pmcid: 6482113 doi: 10.1126/science.aau5324
Vinh, N. X., Epps, J. & Bailey, J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010).
Chang, F., Qiu, W., Zamar, R. H., Lazarus, R. & Wang, X. clues: an r package for nonparametric clustering based on local shrinking. J. Stat. Softw. 33, (2010).
Pons, P. & Latapy, M. in Intl Symp. Computer Information Sci. 284–293 (Springer, 2005).
Kurrasch, D. M. et al. The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J. Neurosci. 27, 13624–13634 (2007).
pubmed: 18077674 pmcid: 6673626 doi: 10.1523/JNEUROSCI.2858-07.2007
Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).
pubmed: 26687838 pmcid: 26687838 doi: 10.1016/j.neuron.2015.11.013
Kelley, K. W., Nakao-Inoue, H., Molofsky, A. V. & Oldham, M. C. Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes. Nat. Neurosci. 21, 1171–1184 (2018).
pubmed: 30154505 pmcid: 6192711 doi: 10.1038/s41593-018-0216-z
Lin, Y. et al. Evaluating stably expressed genes in single cells. Gigascience 8, giz106 (2019).
Extra Coordinate Systems. ‘Geoms’, Statistical Transformations, Scales and Fonts for 'ggplot2' [R package ggalt version 0.4.0] v. 0.4.0 https://CRAN.R-project.org/package=ggalt (2017).
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
pubmed: 30914743 pmcid: 6435756 doi: 10.1038/s41598-019-41695-z
Zhang, J. M., Kamath, G. M. & Tse, D. N. Valid post-clustering differential analysis for single-cell RNA-seq. Cell Syst. 9, 383–392.e6 (2019).
pubmed: 31521605 pmcid: 7202736 doi: 10.1016/j.cels.2019.07.012
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 5802054 pmcid: 5802054 doi: 10.1186/s13059-017-1382-0
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Preprint at https://www.biorxiv.org/content/10.1101/820936v1 (2019).
Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35, 2159–2161 (2019).
pubmed: 30445495 doi: 10.1093/bioinformatics/bty916
Kanamori, M. et al. A genome-wide and nonredundant mouse transcription factor database. Biochem. Biophys. Res. Commun. 322, 787–793 (2004).
pubmed: 15336533 doi: 10.1016/j.bbrc.2004.07.179
Ravasi, T. et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140, 744–752 (2010).
pubmed: 20211142 doi: 10.1016/j.cell.2010.01.044
Forrest, A. R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).
pubmed: 24670764 doi: 10.1038/nature13182
Ntranos, V., Yi, L., Melsted, P. & Pachter, L. Identification of transcriptional signatures for cell types from single-cell RNA-seq. Nat. Methods 16, 163–166 (2019).
Bastian, M., Heymann, S. & Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks https://gephi.org/publications/gephi-bastian-feb09.pdf (2009).
Canela-Xandri, O., Rawlik, K. & Tenesa, A. An atlas of genetic associations in UK Biobank. Nat. Genet. 50, 1593–1599 (2018).
pubmed: 30349118 pmcid: 6707814 doi: 10.1038/s41588-018-0248-z
Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).
pubmed: 12883005 doi: 10.1073/pnas.1530509100
qvalue: Q-value estimation for false discovery rate control v. 2.18.0 (R package, 2019).
Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34, 1600–1602 (2018).
pubmed: 29069305 doi: 10.1093/bioinformatics/btx657
Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 37, 451–460 (2019).
pubmed: 30899105 doi: 10.1038/s41587-019-0068-4
Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).
pubmed: 26095251 pmcid: 4508757 doi: 10.1016/j.cell.2015.05.047
Espana, A. & Clotman, F. Onecut transcription factors are required for the second phase of development of the A13 dopaminergic nucleus in the mouse. J. Comp. Neurol. 520, 1424–1441 (2012).
pubmed: 22102297 doi: 10.1002/cne.22803
Miyazaki, T., Fukaya, M., Shimizu, H. & Watanabe, M. Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur. J. Neurosci. 17, 2563–2572 (2003).
pubmed: 12823463 doi: 10.1046/j.1460-9568.2003.02698.x
Bartesaghi, L. et al. PRDM12 is required for initiation of the nociceptive neuron lineage during neurogenesis. Cell Rep. 26, 3484–3492.e4 (2019).
pubmed: 30917305 doi: 10.1016/j.celrep.2019.02.098
Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).
pubmed: 22166544 pmcid: 3338343 doi: 10.1016/j.jmoldx.2011.08.002
Choi, H. M. T. et al. Mapping a multiplexed zoo of mRNA expression. Development 143, 3632–3637 (2016).
pubmed: 27702788 pmcid: 5087610 doi: 10.1242/dev.140137
Zhao, S. et al. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods 8, 745–752 (2011).
pubmed: 21985008 pmcid: 3191888 doi: 10.1038/nmeth.1668

Auteurs

Roman A Romanov (RA)

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
Department of Neuroscience, Biomedicum D7, Karolinska Institutet, Solna, Sweden.

Evgenii O Tretiakov (EO)

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.

Maria Eleni Kastriti (ME)

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
Department of Physiology and Pharmacology, Biomedicum D6, Karolinska Institutet, Solna, Sweden.

Maja Zupancic (M)

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.

Martin Häring (M)

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.

Solomiia Korchynska (S)

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.

Konstantin Popadin (K)

Human Genomics of Infection and Immunity, School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
Center for Mitochondrial Functional Genomics, Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.

Marco Benevento (M)

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.

Patrick Rebernik (P)

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.

Francois Lallemend (F)

Department of Neuroscience, Biomedicum D7, Karolinska Institutet, Solna, Sweden.

Katsuhiko Nishimori (K)

Deptartment of Obesity and Internal Inflammation, Fukushima Medical University, Fukushima City, Japan.

Frédéric Clotman (F)

Laboratory of Neural Differentiation, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.

William D Andrews (WD)

Department of Cell and Developmental Biology, University College London, London, UK.

John G Parnavelas (JG)

Department of Cell and Developmental Biology, University College London, London, UK.

Matthias Farlik (M)

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
Department of Dermatology, Medical University of Vienna, Vienna, Austria.

Christoph Bock (C)

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.

Igor Adameyko (I)

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
Department of Physiology and Pharmacology, Biomedicum D6, Karolinska Institutet, Solna, Sweden.

Tomas Hökfelt (T)

Department of Neuroscience, Biomedicum D7, Karolinska Institutet, Solna, Sweden.

Erik Keimpema (E)

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.

Tibor Harkany (T)

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria. tibor.harkany@meduniwien.ac.at.
Department of Neuroscience, Biomedicum D7, Karolinska Institutet, Solna, Sweden. tibor.harkany@meduniwien.ac.at.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH