Molecular design of hypothalamus development.
Animals
Cell Differentiation
Cell Lineage
Dopamine
/ metabolism
Dopaminergic Neurons
/ cytology
Ectoderm
/ cytology
Female
GABAergic Neurons
/ cytology
Gene Expression Regulation, Developmental
Gene Regulatory Networks
Genome-Wide Association Study
Glutamic Acid
/ metabolism
Hypothalamus
/ cytology
Male
Mice
Morphogenesis
/ genetics
Nerve Tissue Proteins
/ metabolism
Neuroglia
/ cytology
Neuropeptides
/ metabolism
Neurotransmitter Agents
/ metabolism
Receptors, Immunologic
/ metabolism
Regulon
/ genetics
Signal Transduction
Transcription Factors
/ metabolism
gamma-Aminobutyric Acid
/ metabolism
Roundabout Proteins
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
09
06
2019
accepted:
05
03
2020
pubmed:
6
6
2020
medline:
10
7
2020
entrez:
6
6
2020
Statut:
ppublish
Résumé
A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates
Identifiants
pubmed: 32499648
doi: 10.1038/s41586-020-2266-0
pii: 10.1038/s41586-020-2266-0
pmc: PMC7292733
mid: EMS85981
doi:
Substances chimiques
Nerve Tissue Proteins
0
Neuropeptides
0
Neurotransmitter Agents
0
Receptors, Immunologic
0
Transcription Factors
0
slit protein, vertebrate
0
Glutamic Acid
3KX376GY7L
gamma-Aminobutyric Acid
56-12-2
Dopamine
VTD58H1Z2X
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
246-252Subventions
Organisme : European Research Council
ID : 695136
Pays : International
Organisme : Austrian Science Fund FWF
ID : DOC 33
Pays : Austria
Références
Saper, C. B. & Lowell, B. B. The hypothalamus. Curr. Biol. 24, R1111–R1116 (2014).
pubmed: 25465326
doi: 10.1016/j.cub.2014.10.023
Dulac, C., O’Connell, L. A. & Wu, Z. Neural control of maternal and paternal behaviors. Science 345, 765–770 (2014).
pubmed: 25124430
pmcid: 4230532
doi: 10.1126/science.1253291
Xie, Y. & Dorsky, R. I. Development of the hypothalamus: conservation, modification and innovation. Development 144, 1588–1599 (2017).
pubmed: 28465334
pmcid: 5450842
doi: 10.1242/dev.139055
Romanov, R. A. et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat. Neurosci. 20, 176–188 (2017).
doi: 10.1038/nn.4462
Andrews, W. et al. The role of Slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Dev. Biol. 313, 648–658 (2008).
pubmed: 18054781
doi: 10.1016/j.ydbio.2007.10.052
Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).
pubmed: 29513653
pmcid: 6052457
doi: 10.1038/nature25999
Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).
pubmed: 19763105
pmcid: 2913577
doi: 10.1038/nrn2719
Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e1022 (2018).
pubmed: 30096314
pmcid: 6086934
doi: 10.1016/j.cell.2018.06.021
Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).
pubmed: 28166221
pmcid: 5323293
doi: 10.1038/nn.4495
Toda, C., Santoro, A., Kim, J. D. & Diano, S. POMC neurons: from birth to death. Annu. Rev. Physiol. 79, 209–236 (2017).
pubmed: 28192062
pmcid: 5669621
doi: 10.1146/annurev-physiol-022516-034110
Burbridge, S., Stewart, I. & Placzek, M. Development of the neuroendocrine hypothalamus. Compr. Physiol. 6, 623–643 (2016).
pubmed: 27065164
doi: 10.1002/cphy.c150023
Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).
pubmed: 30890159
pmcid: 6425583
doi: 10.1186/s13059-019-1663-x
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
pubmed: 6130801
pmcid: 6130801
doi: 10.1038/s41586-018-0414-6
Aujla, P. K., Naratadam, G. T., Xu, L. & Raetzman, L. T. Notch/Rbpjκ signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons. Development 140, 3511–3521 (2013).
pubmed: 23884446
pmcid: 3742139
doi: 10.1242/dev.098681
McNay, D. E., Pelling, M., Claxton, S., Guillemot, F. & Ang, S.-L. Mash1 is required for generic and subtype differentiation of hypothalamic neuroendocrine cells. Mol. Endocrinol. 20, 1623–1632 (2006).
pubmed: 16469766
doi: 10.1210/me.2005-0518
De Marco García, N. V., Karayannis, T. & Fishell, G. Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature 472, 351–355 (2011).
pubmed: 21460837
pmcid: 3641515
doi: 10.1038/nature09865
Cobos, I., Borello, U. & Rubenstein, J. L. Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron 54, 873–888 (2007).
pubmed: 17582329
pmcid: 4921237
doi: 10.1016/j.neuron.2007.05.024
Wamsley, B. & Fishell, G. Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat. Rev. Neurosci. 18, 299–309 (2017).
pubmed: 28381833
doi: 10.1038/nrn.2017.30
Gerstner, J. R. & Landry, C. F. Expression of the transcriptional coactivator CITED1 in the adult and developing murine brain. Dev. Neurosci. 29, 203–212 (2007).
pubmed: 17047318
doi: 10.1159/000096389
Hökfelt, T., Meister, B., Melander, T. & Everitt, B. Coexistence of classical transmitters and peptides with special reference to the arcuate nucleus–median eminence complex. Adv. Biochem. Psychopharmacol. 43, 21–34 (1987).
pubmed: 2884817
Motoike, T. et al. Transient expression of neuropeptide W in postnatal mouse hypothalamus—a putative regulator of energy homeostasis. Neuroscience 301, 323–337 (2015).
pubmed: 26073698
doi: 10.1016/j.neuroscience.2015.06.014
Maejima, Y. et al. Oxytocinergic circuit from paraventricular and supraoptic nuclei to arcuate POMC neurons in hypothalamus. FEBS Lett. 588, 4404–4412 (2014).
pubmed: 25448678
doi: 10.1016/j.febslet.2014.10.010
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
pubmed: 5937676
pmcid: 5937676
doi: 10.1038/nmeth.4463
Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).
pubmed: 28622505
pmcid: 5536862
doi: 10.1016/j.cell.2017.05.038
Popadin, K. et al. Slightly deleterious genomic variants and transcriptome perturbations in Down syndrome embryonic selection. Genome Res. 28, 1–10 (2018).
pubmed: 29237728
pmcid: 5749173
doi: 10.1101/gr.228411.117
Cardenas, A. et al. Evolution of cortical neurogenesis in amniotes controlled by Robo signaling levels. Cell 174, 590–606.e521 (2018).
pubmed: 29961574
pmcid: 6063992
doi: 10.1016/j.cell.2018.06.007
Chédotal, A. & Richards, L. J. Wiring the brain: the biology of neuronal guidance. Cold Spring Harb. Perspect. Biol. 2, a001917 (2010).
pubmed: 20463002
pmcid: 2869517
doi: 10.1101/cshperspect.a001917
Arenas, E., Denham, M. & Villaescusa, J. C. How to make a midbrain dopaminergic neuron. Development 142, 1918–1936 (2015).
pubmed: 26015536
doi: 10.1242/dev.097394
Tritsch, N. X., Ding, J. B. & Sabatini, B. L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490, 262–266 (2012).
pubmed: 23034651
pmcid: 3944587
doi: 10.1038/nature11466
Matsushita, N. et al. Dynamics of tyrosine hydroxylase promoter activity during midbrain dopaminergic neuron development. J. Neurochem. 82, 295–304 (2002).
pubmed: 12124430
doi: 10.1046/j.1471-4159.2002.00972.x
Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).
pubmed: 11373681
doi: 10.1038/35078085
Kim, E. J., Ables, J. L., Dickel, L. K., Eisch, A. J. & Johnson, J. E. Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS One 6, e18472 (2011).
pubmed: 21483754
pmcid: 3069117
doi: 10.1371/journal.pone.0018472
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
doi: 10.1038/nn.2467
Shu, T., Butz, K. G., Plachez, C., Gronostajski, R. M. & Richards, L. J. Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice. J. Neurosci. 23, 203–212 (2003).
pubmed: 12514217
pmcid: 6742120
doi: 10.1523/JNEUROSCI.23-01-00203.2003
Bali, B., Erdélyi, F., Szabó, G. & Kovács, K. J. Visualization of stress-responsive inhibitory circuits in the GAD65-eGFP transgenic mice. Neurosci. Lett. 380, 60–65 (2005).
pubmed: 15854751
doi: 10.1016/j.neulet.2005.01.014
Tamamaki, N. et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 467, 60–79 (2003).
pubmed: 14574680
doi: 10.1002/cne.10905
Andrews, W. et al. Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133, 2243–2252 (2006).
pubmed: 16690755
doi: 10.1242/dev.02379
Plump, A. S. et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33, 219–232 (2002).
pubmed: 11804570
doi: 10.1016/S0896-6273(01)00586-4
Yang, L. et al. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development 133, 1575–1585 (2006).
pubmed: 16556916
pmcid: 5576437
doi: 10.1242/dev.02322
Yoshida, M. et al. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci. 29, 2259–2271 (2009).
pubmed: 19228979
pmcid: 6666325
doi: 10.1523/JNEUROSCI.5593-08.2009
Bäckman, C. M. et al. Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus. Genesis 44, 383–390 (2006).
pubmed: 16865686
doi: 10.1002/dvg.20228
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
pubmed: 4481139
pmcid: 4481139
doi: 10.1016/j.cell.2015.05.002
Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).
pubmed: 30902100
pmcid: 6431044
doi: 10.1186/s13059-019-1662-y
Petukhov, V. et al. dropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments. Genome Biol. 19, 78 (2018).
pubmed: 29921301
pmcid: 6010209
doi: 10.1186/s13059-018-1449-6
van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).
doi: 10.1038/nmeth.4437
Hinman, M. N. & Lou, H. Diverse molecular functions of Hu proteins. Cell. Mol. Life Sci. 65, 3168–3181 (2008).
pubmed: 18581050
pmcid: 2580827
doi: 10.1007/s00018-008-8252-6
Mili, S. & Steitz, J. A. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10, 1692–1694 (2004).
pubmed: 15388877
pmcid: 1370654
doi: 10.1261/rna.7151404
Yoo, S. & Blackshaw, S. Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog. Neurobiol. 170, 53–66 (2018).
pubmed: 29631023
pmcid: 6173995
doi: 10.1016/j.pneurobio.2018.04.001
Miranda-Angulo, A. L., Byerly, M. S., Mesa, J., Wang, H. & Blackshaw, S. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J. Comp. Neurol. 522, 876–899 (2014).
pubmed: 23939786
pmcid: 3947139
doi: 10.1002/cne.23451
Shimogori, T. et al. A genomic atlas of mouse hypothalamic development. Nat. Neurosci. 13, 767–775 (2010).
pubmed: 20436479
pmcid: 4067769
doi: 10.1038/nn.2545
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423
pmcid: 6927181
doi: 10.1186/s13059-019-1874-1
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
pubmed: 26653891
pmcid: 4676162
doi: 10.1186/s13059-015-0844-5
Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).
doi: 10.1126/science.aaa1934
Alpár, A., Benevento, M., Romanov, R. A., Hökfelt, T. & Harkany, T. Hypothalamic cell diversity: non-neuronal codes for long-distance volume transmission by neuropeptides. Curr. Opin. Neurobiol. 56, 16–23 (2019).
pubmed: 30471413
doi: 10.1016/j.conb.2018.10.012
Romanov, R. A., Alpár, A., Hökfelt, T. & Harkany, T. Unified classification of molecular, network, and endocrine features of hypothalamic neurons. Annu. Rev. Neurosci. 42, 1–26 (2019).
pubmed: 30735460
doi: 10.1146/annurev-neuro-070918-050414
Polański, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 964–965 (2020).
pubmed: 31400197
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. JOSS 3, 861 (2018).
doi: 10.21105/joss.00861
Johnson, J., Douze, M. & Jegou, H. Billion-scale similarity search with GPUs. IEEE Trans. Big Data https://doi.org/10.1109/TBDATA.2019.2921572 (2019).
Maneewongvatana, S. & Mount, D. in Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges Vol. 59 DIMACS Series in Discrete Mathematics and Theoretical Computer Science (eds. Goldwasser, M., Johnson, D. & McGeoch, C.) 105–123 (American Mathematical Society, 2002).
Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685–691 (2019).
pubmed: 31061482
pmcid: 6551256
doi: 10.1038/s41587-019-0113-3
Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887.e1817 (2019).
pubmed: 31178122
pmcid: 6716797
doi: 10.1016/j.cell.2019.05.006
Korsunsky, I. et al. Fast, sensitive, and accurate integration of single cell data with harmony. Nature Methods 16, 1289–1296 (2019).
pubmed: 31740819
pmcid: 6884693
doi: 10.1038/s41592-019-0619-0
Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).
pubmed: 29608177
pmcid: 6152897
doi: 10.1038/nbt.4091
Barkas, N. et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods 16, 695–698 (2019).
pubmed: 31308548
pmcid: 6684315
doi: 10.1038/s41592-019-0466-z
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).
pubmed: 6687398
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 1860–1872 (2015).
pubmed: 26430063
pmcid: 4665007
doi: 10.1101/gr.192237.115
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).
doi: 10.1038/nbt.4314
Crow, M., Paul, A., Ballouz, S., Huang, Z. J. & Gillis, J. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nat. Commun. 9, 884 (2018).
pubmed: 29491377
pmcid: 5830442
doi: 10.1038/s41467-018-03282-0
Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep. 18, 3227–3241 (2017). https://doi.org/10.1016/j.celrep.2017.03.004 .
doi: 10.1016/j.celrep.2017.03.004
pubmed: 5782816
pmcid: 5782816
Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).
pubmed: 6482113
pmcid: 6482113
doi: 10.1126/science.aau5324
Vinh, N. X., Epps, J. & Bailey, J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010).
Chang, F., Qiu, W., Zamar, R. H., Lazarus, R. & Wang, X. clues: an r package for nonparametric clustering based on local shrinking. J. Stat. Softw. 33, (2010).
Pons, P. & Latapy, M. in Intl Symp. Computer Information Sci. 284–293 (Springer, 2005).
Kurrasch, D. M. et al. The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J. Neurosci. 27, 13624–13634 (2007).
pubmed: 18077674
pmcid: 6673626
doi: 10.1523/JNEUROSCI.2858-07.2007
Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).
pubmed: 26687838
pmcid: 26687838
doi: 10.1016/j.neuron.2015.11.013
Kelley, K. W., Nakao-Inoue, H., Molofsky, A. V. & Oldham, M. C. Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes. Nat. Neurosci. 21, 1171–1184 (2018).
pubmed: 30154505
pmcid: 6192711
doi: 10.1038/s41593-018-0216-z
Lin, Y. et al. Evaluating stably expressed genes in single cells. Gigascience 8, giz106 (2019).
Extra Coordinate Systems. ‘Geoms’, Statistical Transformations, Scales and Fonts for 'ggplot2' [R package ggalt version 0.4.0] v. 0.4.0 https://CRAN.R-project.org/package=ggalt (2017).
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
pubmed: 30914743
pmcid: 6435756
doi: 10.1038/s41598-019-41695-z
Zhang, J. M., Kamath, G. M. & Tse, D. N. Valid post-clustering differential analysis for single-cell RNA-seq. Cell Syst. 9, 383–392.e6 (2019).
pubmed: 31521605
pmcid: 7202736
doi: 10.1016/j.cels.2019.07.012
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 5802054
pmcid: 5802054
doi: 10.1186/s13059-017-1382-0
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Preprint at https://www.biorxiv.org/content/10.1101/820936v1 (2019).
Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35, 2159–2161 (2019).
pubmed: 30445495
doi: 10.1093/bioinformatics/bty916
Kanamori, M. et al. A genome-wide and nonredundant mouse transcription factor database. Biochem. Biophys. Res. Commun. 322, 787–793 (2004).
pubmed: 15336533
doi: 10.1016/j.bbrc.2004.07.179
Ravasi, T. et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140, 744–752 (2010).
pubmed: 20211142
doi: 10.1016/j.cell.2010.01.044
Forrest, A. R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).
pubmed: 24670764
doi: 10.1038/nature13182
Ntranos, V., Yi, L., Melsted, P. & Pachter, L. Identification of transcriptional signatures for cell types from single-cell RNA-seq. Nat. Methods 16, 163–166 (2019).
Bastian, M., Heymann, S. & Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks https://gephi.org/publications/gephi-bastian-feb09.pdf (2009).
Canela-Xandri, O., Rawlik, K. & Tenesa, A. An atlas of genetic associations in UK Biobank. Nat. Genet. 50, 1593–1599 (2018).
pubmed: 30349118
pmcid: 6707814
doi: 10.1038/s41588-018-0248-z
Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).
pubmed: 12883005
doi: 10.1073/pnas.1530509100
qvalue: Q-value estimation for false discovery rate control v. 2.18.0 (R package, 2019).
Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34, 1600–1602 (2018).
pubmed: 29069305
doi: 10.1093/bioinformatics/btx657
Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 37, 451–460 (2019).
pubmed: 30899105
doi: 10.1038/s41587-019-0068-4
Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).
pubmed: 26095251
pmcid: 4508757
doi: 10.1016/j.cell.2015.05.047
Espana, A. & Clotman, F. Onecut transcription factors are required for the second phase of development of the A13 dopaminergic nucleus in the mouse. J. Comp. Neurol. 520, 1424–1441 (2012).
pubmed: 22102297
doi: 10.1002/cne.22803
Miyazaki, T., Fukaya, M., Shimizu, H. & Watanabe, M. Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur. J. Neurosci. 17, 2563–2572 (2003).
pubmed: 12823463
doi: 10.1046/j.1460-9568.2003.02698.x
Bartesaghi, L. et al. PRDM12 is required for initiation of the nociceptive neuron lineage during neurogenesis. Cell Rep. 26, 3484–3492.e4 (2019).
pubmed: 30917305
doi: 10.1016/j.celrep.2019.02.098
Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).
pubmed: 22166544
pmcid: 3338343
doi: 10.1016/j.jmoldx.2011.08.002
Choi, H. M. T. et al. Mapping a multiplexed zoo of mRNA expression. Development 143, 3632–3637 (2016).
pubmed: 27702788
pmcid: 5087610
doi: 10.1242/dev.140137
Zhao, S. et al. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods 8, 745–752 (2011).
pubmed: 21985008
pmcid: 3191888
doi: 10.1038/nmeth.1668