An electron density based analysis to establish the electronic adiabaticity of proton coupled electron transfer reactions.
density based indexes
density functional theory
electronic adiabaticity degree
non adiabatic coupling
proton coupled electron transfer
Journal
Journal of computational chemistry
ISSN: 1096-987X
Titre abrégé: J Comput Chem
Pays: United States
ID NLM: 9878362
Informations de publication
Date de publication:
30 07 2020
30 07 2020
Historique:
received:
04
03
2020
revised:
22
04
2020
accepted:
24
04
2020
pubmed:
6
6
2020
medline:
16
6
2021
entrez:
6
6
2020
Statut:
ppublish
Résumé
Electrons and protons are the main actors in play in proton coupled electron transfer (PCET) reactions, which are fundamental in many biological (i.e., photosynthesis and enzymatic reactions) and electrochemical processes. The mechanism, energetics and kinetics of PCET reactions are strongly controlled by the coupling between the transferred electrons and protons. Concerted PCET reactions are classified according to the electronical adiabaticity degree of the process. To discriminate among different mechanisms, we propose a new analysis based on the use of electron density based indexes. We choose, as test case, the 3-Methylphenoxyl/phenol system in two different conformations to show how the proposed analysis is a suitable tool to discriminate between the different degree of adiabaticity of PCET processes. The very low computational cost of this procedure is extremely promising to analyze and provide evidences of PCET mechanisms ruling the reactivity of many biological and catalytic systems.
Substances chimiques
Phenols
0
Protons
0
phenoxy radical
3229-70-7
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1835-1841Informations de copyright
© 2020 Wiley Periodicals, Inc.
Références
M. Wikström, Curr. Opin. Struct. Biol. 1998, 8, 480.
H. Michel, Biochemistry 1999, 38, 15129.
E. A. Berry, M. Guergova-Kuras, L.-s. Huang, A. R. Crofts, Annu. Rev. Biochem. 2000, 69, 1005.
A. R. Crofts, S. Lhee, S. B. Crofts, J. Cheng, S. Rose, Biochim. Biophys. Acta Bioenerg. 2006, 1757, 1019.
R. Improta, S. Antonello, F. Formaggio, F. Maran, N. Rega, V. Barone, J. Phys. Chem. B 2005, 109, 1023.
M. Okamura, M. Paddock, M. Graige, G. Feher, Biochim. Biophys. Acta Bioenerg. 2000, 1458, 148.
M. Saraste, Science 1999, 283, 1488.
S. Y. Reece, D. G. Nocera, Annu. Rev. Biochem. 2009, 78, 673.
9. T. J. Meyer, M. H. V. Huynh, H. H. Thorp, Angew. Chem. Int. Ed. 2007, 46, 5284.
R. Cukier, Biochim. Biophys. Acta Bioenerg. 2004, 1655, 37.
N. Madhiri, H. Finklea, Langmuir 2006, 22, 10643.
C. Costentin, M. Robert, J. Savéant, J. Am. Chem. Soc. 2006, 128, 4552.
B. Li, J. Zhao, K. Onda, K. Jordan, J. Yang, H. Petek, Science 2006, 311, 1436.
R. I. Cukier, D. G. Nocera, Annu. Rev. Phys. Chem. 1998, 49, 337.
J. M. Mayer, Annu. Rev. Phys. Chem. 2004, 55, 363.
A. Migliore, N. F. Polizzi, M. J. Therien, D. N. Beratan, Chem. Rev. 2014, 114, 3381.
D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, T. J. Meyer, Chem. Rev. 2012, 112, 4016.
M. H. V. Huynh, T. J. Meyer, Chem. Rev. 2007, 107, 5004.
S. Hammes-Schiffer, Chem. Rev. 2010, 110, 6937.
S. Hammes-Schiffer, Energy Environ. Sci. 2012, 5, 7696.
S. Hammes-Schiffer, A. A. Stuchebrukhov, Chem. Rev. 2010, 110, 6939.
S. Hammes-Schiffer, J. Am. Chem. Soc. 2015, 137, 8860.
S. Hammes-Schiffer, Chem. Phys. Chem. 2002, 3, 33.
C. Costentin, Chem. Rev. 2008, 108, 2145.
J. M. Mayer, I. J. Rhile, Biochim. Biophys. Acta, Bioenerg. 2004, 1655, 51.
S. Hammes-Schiffer, E. Hatcher, H. Ishikita, J. H. Skone, A. V. Soudackov, Coord. Chem. Rev. 2008, 252, 384.
O. Tishchenko, D. G. Truhlar, A. Ceulemans, M. T. Nguyen, J. Am. Chem. Soc. 2008, 130, 7000.
M. D. Symes, Y. Surendranath, D. A. Lutterman, D. G. Nocera, J. Am. Chem. Soc. 2011, 133, 5174.
C. J. Gagliardi, B. C. Westlake, C. A. Kent, J. J. Paul, J. M. Papanikolas, T. J. Meyer, Coord. Chem. Rev. 2010, 254, 2459.
M. D. Karkas, E. V. Johnston, O. Verho, B. Kermark, Acc. Chem. Res. 2013, 47, 100.
M. J. Llansola-Portoles, R. E. Palacios, D. Gust, T. A. Moore, A. L. Moore, From Molecules to Materials, Springer, Switzerland, 2015, p. 71.
D. Gust, T. A. Moore, A. L. Moore, Faraday discuss. 2012, 155, 9.
J. D. Megiatto, A. Antoniuk-Pablant, B. D. Sherman, G. Kodis, M. Gervaldo, T. A. Moore, A. L. Moore, D. Gust, Proc. Natl. Acad. U.S.A. 2012, 109, 15578.
S. Berardi, S. Drouet, L. Francàs, C. Gimbert-Suriñach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501.
A. K. Harshan, T. Yu, A. V. Soudackov, S. Hammes-Schiffer, J. Am. Chem. Soc. 2015, 137, 13545.
J. H. Skone, A. V. Soudackov, S. Hammes-Schiffer, J. Am. Chem. Soc. 2006, 128, 16655.
A. Sirjoosingh, S. Hammes-Schiffer, J. Phys. Chem. A 2011, 115, 2367.
R. Send, F. Furche, J. Chem. Phys. 2010, 132, 044107.
V. Chernyak, S. Mukamel, J. Chem. Phys. 2000, 112, 3572.
D. B. Lingerfelt, D. B. Williams-Young, A. Petrone, X. Li, J. Chem. Theory Comput. 2016, 12, 935.
M. G. Chiariello, U. Raucci, F. Coppola, N. Rega, Phys. Chem. Chem. Phys. 2019, 21, 3606.
M. Barbatti, WIREs Comput. Mol. Sci. 2011, 1, 620.
J. D. Coe, M. T. Ong, B. G. Levine, T. J. Martínez, J. Phys. Chem. A 2008, 112, 12559.
W. Domcke, D. R. Yarkony, H. Köppel, Conical Intersections: Theory, Computation and Experiment, Vol. 17, World Scientific, Singapore, 2011.
N. C. Handy, A. M. Lee, Chem. Phys. Lett. 1996, 252, 425.
D. G. Truhlar, C. A. Mead, Phys. Rev. A 2003, 68, 032501.
J. C. Tully, J. Chem. Phys. 1990, 93, 1061.
J. C. Tully, Modern Methods for Multidimensional Dynamics Computations in Chemistry, World Scientific, Singapore, 1998, p. 34.
A. Petrone, D. B. Lingerfelt, D. B. Williams-Young, X. Li, J. Phys. Chem. Lett. 2016, 7, 4501.
J. L. Stein, M. I. Steimle, M. W. Terban, A. Petrone, S. J. Billinge, X. Li, B. M. Cossairt, Chem. Mater. 2017, 29, 7984.
A. Petrone, J. J. Goings, X. Li, Phys. Rev. B 2016, 94, 165402.
R. Spezia, I. Burghardt, J. T. Hynes, Mol. Phys. 2006, 104, 903.
J. P. Malhado, R. Spezia, J. T. Hynes, Int. J. Quant. Chem. 2013, 113, 296.
M. J. Bearpark, M. A. Robb, H. B. Schlegel, Chem. Phys. Lett. 1994, 223, 269.
G. Donati, D. B. Lingerfelt, A. Petrone, N. Rega, X. Li, J. Phys. Chem. A 2016, 120, 7255.
C. Adamo, T. Le Bahers, M. Savarese, L. Wilbraham, G. García, R. Fukuda, M. Ehara, N. Rega, I. Ciofini, Coord. Chem. Rev. 2015, 304, 166.
T. Le Bahers, C. Adamo, I. Ciofini, J. Chem. Theory Comput. 2011, 7, 2498.
M. Savarese, P. A. Netti, C. Adamo, N. Rega, I. Ciofini, J. Phys. Chem. B 2013, 117, 16165.
L. Wilbraham, M. Savarese, N. Rega, C. Adamo, I. Ciofini, J. Phys. Chem. B 2014, 119, 2459.
M. Savarese, U. Raucci, P. A. Netti, C. Adamo, N. Rega, I. Ciofini, Theor. Chem. Acc. 2016, 135, 211.
M. Savarese, U. Raucci, R. Fukuda, C. Adamo, M. Ehara, N. Rega, I. Ciofini, J. Comput. Chem. 2017, 38, 1084.
M. G. Chiariello, N. Rega, J. Phys. Chem. A 2018, 122, 2884.
F. Maschietto, J. Sanz García, M. Campetella, I. Ciofini, J. Comput. Chem. 2019, 40, 650.
A. Petrone, P. Cimino, G. Donati, H. P. Hratchian, M. J. Frisch, N. Rega, J. Chem. Theory Comput. 2016, 12, 4925.
G. Donati, A. Petrone, P. Caruso, N. Rega, Chem. Sci. 2018, 9, 1126.
M. Savarese, U. Raucci, C. Adamo, P. A. Netti, I. Ciofini, N. Rega, Phys. Chem. Chem. Phys. 2014, 16, 20681.
M. Ehara, R. Fukuda, C. Adamo, I. Ciofini, J. Comput. Chem. 2013, 34, 2498.
R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Vol. 16, Oxford University Press, Oxford, 1989.
R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218.
E. Runge, E. K. Gross, Phys. Rev. Lett. 1984, 52, 997.
Y. Zhao, D. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
H. P. Hratchian, H. B. Schlegel, J. Chem. Phys. 2004, 120, 9918.
C. Dykstra, G. Frenking, K. Kim, G. Scuseria, Theory and applications of computational chemistry: The first forty years, Elsevier, Amsterdam, 2011.
H. Hratchian, H. Schlegel, J. Chem. Theory Comput. 2005, 1, 61.
T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51.
D. Jacquemin, E. A. Perpete, G. E. Scuseria, I. Ciofini, C. Adamo, J. Chem. Theory Comput. 2008, 4, 123.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Revision A.03, Gaussian Inc., Wallingford, CT, 2016.