Plasma transferrin and hemopexin are associated with altered Aβ uptake and cognitive decline in Alzheimer's disease pathology.
Alzheimer’s disease
Cognitive impairment
Cognitively normal
Heme
Hemoglobin
Iron
Mild cognitive impairment
Proteomics
Transferrin
Journal
Alzheimer's research & therapy
ISSN: 1758-9193
Titre abrégé: Alzheimers Res Ther
Pays: England
ID NLM: 101511643
Informations de publication
Date de publication:
09 06 2020
09 06 2020
Historique:
received:
05
03
2020
accepted:
18
05
2020
entrez:
11
6
2020
pubmed:
11
6
2020
medline:
25
6
2021
Statut:
epublish
Résumé
Heme and iron homeostasis is perturbed in Alzheimer's disease (AD); therefore, the aim of the study was to examine the levels and association of heme with iron-binding plasma proteins in cognitively normal (CN), mild cognitive impairment (MCI), and AD individuals from the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) and Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohorts. Non-targeted proteomic analysis by high-resolution mass spectrometry was performed to quantify relative protein abundances in plasma samples from 144 CN individuals from the AIBL and 94 CN from KARVIAH cohorts and 21 MCI and 25 AD from AIBL cohort. ANCOVA models were utilized to assess the differences in plasma proteins implicated in heme/iron metabolism, while multiple regression modeling (and partial correlation) was performed to examine the association between heme and iron proteins, structural neuroimaging, and cognitive measures. Of the plasma proteins implicated in iron and heme metabolism, hemoglobin subunit β (p = 0.001) was significantly increased in AD compared to CN individuals. Multiple regression modeling adjusted for age, sex, APOEε4 genotype, and disease status in the AIBL cohort revealed lower levels of transferrin but higher levels of hemopexin associated with augmented brain amyloid deposition. Meanwhile, transferrin was positively associated with hippocampal volume and MMSE performance, and hemopexin was negatively associated with CDR scores. Partial correlation analysis revealed lack of significant associations between heme/iron proteins in the CN individuals progressing to cognitive impairment. In conclusion, heme and iron dyshomeostasis appears to be a feature of AD. The causal relationship between heme/iron metabolism and AD warrants further investigation.
Sections du résumé
BACKGROUND
Heme and iron homeostasis is perturbed in Alzheimer's disease (AD); therefore, the aim of the study was to examine the levels and association of heme with iron-binding plasma proteins in cognitively normal (CN), mild cognitive impairment (MCI), and AD individuals from the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) and Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohorts.
METHODS
Non-targeted proteomic analysis by high-resolution mass spectrometry was performed to quantify relative protein abundances in plasma samples from 144 CN individuals from the AIBL and 94 CN from KARVIAH cohorts and 21 MCI and 25 AD from AIBL cohort. ANCOVA models were utilized to assess the differences in plasma proteins implicated in heme/iron metabolism, while multiple regression modeling (and partial correlation) was performed to examine the association between heme and iron proteins, structural neuroimaging, and cognitive measures.
RESULTS
Of the plasma proteins implicated in iron and heme metabolism, hemoglobin subunit β (p = 0.001) was significantly increased in AD compared to CN individuals. Multiple regression modeling adjusted for age, sex, APOEε4 genotype, and disease status in the AIBL cohort revealed lower levels of transferrin but higher levels of hemopexin associated with augmented brain amyloid deposition. Meanwhile, transferrin was positively associated with hippocampal volume and MMSE performance, and hemopexin was negatively associated with CDR scores. Partial correlation analysis revealed lack of significant associations between heme/iron proteins in the CN individuals progressing to cognitive impairment.
CONCLUSIONS
In conclusion, heme and iron dyshomeostasis appears to be a feature of AD. The causal relationship between heme/iron metabolism and AD warrants further investigation.
Identifiants
pubmed: 32517787
doi: 10.1186/s13195-020-00634-1
pii: 10.1186/s13195-020-00634-1
pmc: PMC7285604
doi:
Substances chimiques
Amyloid beta-Peptides
0
Transferrin
0
Hemopexin
9013-71-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
72Subventions
Organisme : Biotechnology and Biological Sciences Research Council
Pays : United Kingdom
Références
Acta Neuropathol. 1991;82(4):239-59
pubmed: 1759558
J Alzheimers Dis. 2015;43(2):519-34
pubmed: 25114080
Biochim Biophys Acta. 2003 Jan 20;1637(1):46-54
pubmed: 12527406
J Neurosci. 1994 Apr;14(4):2225-35
pubmed: 7512635
J Neurosci. 2009 Jan 21;29(3):610-9
pubmed: 19158288
J Magn Reson Imaging. 2009 Apr;29(4):793-8
pubmed: 19306401
Proteomics. 2003 Nov;3(11):2240-8
pubmed: 14595822
Exp Gerontol. 2019 Oct 15;126:110680
pubmed: 31382012
Free Radic Biol Med. 2019 Mar;133:221-233
pubmed: 30266679
J Am Chem Soc. 2011 Jan 12;133(1):81-7
pubmed: 21141958
Sci Adv. 2019 Feb 06;5(2):eaau7220
pubmed: 30775436
Neurobiol Dis. 2004 Dec;17(3):367-77
pubmed: 15571973
J Mol Neurosci. 2016 May;59(1):1-17
pubmed: 26809286
Dalton Trans. 2016 Sep 28;45(36):14343-51
pubmed: 27539650
Neuroscience. 2016 Sep 22;332:191-202
pubmed: 27403880
Cancer Control. 2010 Jan;17(1):58-62
pubmed: 20010520
J Comp Neurol. 2009 Aug 10;515(5):538-47
pubmed: 19479992
J Alzheimers Dis. 2018;62(3):965-992
pubmed: 29562546
Neurology. 2009 Mar 17;72(11):999-1007
pubmed: 19289740
EMBO Mol Med. 2016 Jun 01;8(6):595-608
pubmed: 27025652
Neurobiol Aging. 2010 Aug;31(8):1275-83
pubmed: 20472326
J Neurochem. 2013 Apr;125(1):89-101
pubmed: 23350672
Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11153-8
pubmed: 15263070
Brain. 2017 Aug 1;140(8):2112-2119
pubmed: 28899019
Front Physiol. 2015 Jun 30;6:187
pubmed: 26175690
Arch Neurol. 1999 Mar;56(3):303-8
pubmed: 10190820
Redox Biol. 2020 May;32:101494
pubmed: 32199332
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3381-6
pubmed: 16492752
Front Aging Neurosci. 2018 Mar 12;10:65
pubmed: 29593525
Neural Regen Res. 2018 Jul;13(7):1170-1174
pubmed: 30028317
Rapid Commun Mass Spectrom. 2002;16(22):2083-8
pubmed: 12415540
J Neurosci. 2003 May 1;23(9):3807-19
pubmed: 12736351
Free Radic Biol Med. 2012 Nov 15;53(10):1868-76
pubmed: 23000119
Neurobiol Dis. 2015 Sep;81:49-65
pubmed: 26303889
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15454-9
pubmed: 19717439
J Biol Chem. 2017 Aug 18;292(33):13658-13671
pubmed: 28596380
Neurol Res. 2006 Mar;28(2):155-63
pubmed: 16551433
DNA Cell Biol. 2002 Apr;21(4):297-306
pubmed: 12042069
Acta Neuropathol Commun. 2013 Dec 18;1:83
pubmed: 24351276
Neurobiol Aging. 2006 Feb;27(2):252-61
pubmed: 16399210
Mol Psychiatry. 2019 Feb 18;:
pubmed: 30778133
PLoS One. 2012;7(3):e33120
pubmed: 22412990
J Neurochem. 2018 Apr;145(1):34-50
pubmed: 29364516
FASEB J. 2007 Aug;21(10):2312-22
pubmed: 17412999
Dement Geriatr Cogn Dis Extra. 2011 Jan;1(1):366-71
pubmed: 22187543
J Alzheimers Dis. 2011;23(3):537-50
pubmed: 21157025
PLoS One. 2013 Sep 30;8(9):e76203
pubmed: 24098779
Alzheimers Res Ther. 2017 Dec 06;9(1):94
pubmed: 29212527
ACS Chem Neurosci. 2018 Jul 18;9(7):1849-1857
pubmed: 29722955
J Am Geriatr Soc. 2005 Apr;53(4):695-9
pubmed: 15817019
Blood. 2009 Mar 12;113(11):2578-86
pubmed: 19131549
Brain. 2018 Jul 1;141(7):2181-2193
pubmed: 29878075
Neuroepidemiology. 2009;32(1):40-6
pubmed: 19001795
Proteomics Clin Appl. 2015 Aug;9(7-8):715-31
pubmed: 25676562
J Neurochem. 2002 Sep;82(5):1137-47
pubmed: 12358761
Indian J Exp Biol. 2011 Feb;49(2):118-24
pubmed: 21428213
Nature. 2012 Nov 15;491(7424):473-7
pubmed: 23123858
ACS Chem Neurosci. 2015 Mar 18;6(3):398-402
pubmed: 25588002
Neurology. 2011 Jul 19;77(3):219-26
pubmed: 21753176
Alzheimers Res Ther. 2018 Nov 6;10(1):114
pubmed: 30400991
Neurology. 1984 Jul;34(7):939-44
pubmed: 6610841
Biochem Biophys Res Commun. 2014 Sep 26;452(3):676-81
pubmed: 25193696
J Neuroinflammation. 2016 Feb 01;13:26
pubmed: 26831741
Front Neurosci. 2019 Jan 22;13:15
pubmed: 30723395
Mol Psychiatry. 2018 Aug;23(8):1807-1812
pubmed: 28696433
J Biol Chem. 2018 Jul 20;293(29):11358-11373
pubmed: 29871926
Lancet. 2016 Jul 30;388(10043):505-17
pubmed: 26921134
Sci Rep. 2019 Feb 28;9(1):3147
pubmed: 30816126
J Alzheimers Dis. 2014;42(2):679-90
pubmed: 24916541
Alzheimers Res Ther. 2012 Sep 21;4(5):40
pubmed: 22995353
Neurology. 1993 Nov;43(11):2412-4
pubmed: 8232972
Neurobiol Aging. 1991 Jan-Feb;12(1):13-8
pubmed: 2002877
J Intern Med. 2004 Sep;256(3):240-6
pubmed: 15324367
Int Psychogeriatr. 2009 Aug;21(4):672-87
pubmed: 19470201
Blood. 2005 Oct 1;106(7):2572-9
pubmed: 15947085
Mol Psychiatry. 2014 Nov;19(11):1227-34
pubmed: 24419041
Toxicol Appl Pharmacol. 2005 Jan 15;202(2):199-211
pubmed: 15629195
PLoS One. 2011;6(8):e23789
pubmed: 21909359
J Neurosurg. 2011 Apr;114(4):1159-67
pubmed: 21128737
J Cereb Blood Flow Metab. 2009 Mar;29(3):585-95
pubmed: 19116637
Biol Psychiatry. 1994 Apr 1;35(7):480-7
pubmed: 8018799