Glial Endozepines Reverse High-Fat Diet-Induced Obesity by Enhancing Hypothalamic Response to Peripheral Leptin.
Energy homeostasis
Leptin
Octadecaneuropeptide
Tanycytes
ob/ob
pSTAT3
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
Aug 2020
Aug 2020
Historique:
received:
19
12
2019
accepted:
13
05
2020
pubmed:
11
6
2020
medline:
8
6
2021
entrez:
11
6
2020
Statut:
ppublish
Résumé
Research on energy homeostasis has focused on neuronal signaling; however, the role of glial cells has remained little explored. Glial endozepines exert anorexigenic actions by mechanisms which remain poorly understood. In this context, the present study was designed to decipher the mechanisms underlying the anorexigenic action of endozepines and to investigate their potential curative effect on high-fat diet-induced obesity. We carried out a combination of physiological, pharmacological, and molecular analyses together to dissect the underlying mechanisms of endozepine-induced hypophagia. To evaluate the potential anti-obesity effect of endozepines, different model of obesity were used, i.e., ob/ob and diet-induced obese mice. We show that the intracerebral administration of endozepines enhances satiety by targeting anorexigenic brain circuitry and induces STAT3 phosphorylation, a hallmark of leptin signaling. Strikingly, endozepines are entirely ineffective at reducing food intake in the presence of a circulating leptin antagonist and in leptin-deficient mice (ob/ob) but potentiate the reduced food intake and weight loss induced by exogenous leptin administration in these animals. Endozepines reversed high fat diet-induced obesity by reducing food intake and restored leptin-induced STAT3 phosphorylation in the hypothalamus. Interestingly, we observed that glucose and insulin synergistically enhance tanycytic endozepine expression and release. Finally, endozepines, which induce ERK activation necessary for leptin transport into the brain in cultured tanycytes, require tanycytic leptin receptor expression to promote STAT3 phosphorylation in the hypothalamus. Our data identify endozepines as potential anti-obesity compounds in part through the modulation of the LepR-ERK-dependent tanycytic leptin shuttle.
Identifiants
pubmed: 32519243
doi: 10.1007/s12035-020-01944-z
pii: 10.1007/s12035-020-01944-z
doi:
Substances chimiques
Diazepam Binding Inhibitor
0
Leptin
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3307-3333Subventions
Organisme : Agence Nationale de la Recherche
ID : EZICROM ANR-16-CE14-0011
Organisme : Agence Nationale de la Recherche
ID : Glioshuttle4Metabolim ANR-15-CE14-0025
Références
Clasadonte J, Prevot V (2018) The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 14:25–44. https://doi.org/10.1038/nrendo.2017.124
doi: 10.1038/nrendo.2017.124
pubmed: 29076504
García-Cáceres C, Balland E, Prevot V, Luquet S, Woods S, Koch M, Horvath T, Yi CX et al (2019) Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat Neurosci 22:7–14. https://doi.org/10.1038/s41593-018-0286-y
doi: 10.1038/s41593-018-0286-y
pubmed: 30531847
Dallaporta M, Bonnet MS, Horner K, Trouslard J, Jean A, Troadec JD (2010) Glial cells of the nucleus tractus solitarius as partners of the dorsal hindbrain regulation of energy balance: a proposal for a working hypothesis. Brain Res 1350:35–42. https://doi.org/10.1016/j.brainres.2010.04.025
doi: 10.1016/j.brainres.2010.04.025
pubmed: 20451504
Douglass JD, Dorfman MD, Fasnacht R, Shaffer LD, Thaler JP (2017) Astrocyte IKKbeta/NF-kappaB signaling is required for diet-induced obesity and hypothalamic inflammation. Mol Metab 6:366–373. https://doi.org/10.1016/j.molmet.2017.01.010
doi: 10.1016/j.molmet.2017.01.010
pubmed: 28377875
pmcid: 5369266
García-Cáceres C, Fuente-Martín E, Burgos-Ramos E, Granado M, Frago LM, Barrios V, Horvath T, Argente J et al (2011) Differential acute and chronic effects of leptin on hypothalamic astrocyte morphology and synaptic protein levels. Endocrinology. 152:1809–1818. https://doi.org/10.1210/en.2010-1252
doi: 10.1210/en.2010-1252
pubmed: 21343257
pmcid: 3860256
Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, Balland E, Lacombe A et al (2013) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab 17:607–617. https://doi.org/10.1016/j.cmet.2013.03.004
doi: 10.1016/j.cmet.2013.03.004
pubmed: 23562080
pmcid: 3695242
Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA et al (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153–162. https://doi.org/10.1172/JCI59660
doi: 10.1172/JCI59660
pubmed: 22201683
Zhang Y, Reichel JM, Han C, Zuniga-Hertz J, Cai D (2017) Astrocytic process plasticity and IKKbeta/NF-kappaB in central control of blood glucose, blood pressure and body weight. Cell Metab 25:1091–1102. https://doi.org/10.1016/j.cmet.2017.04.002
doi: 10.1016/j.cmet.2017.04.002
pubmed: 28467927
pmcid: 5576872
Grayson BE, Levasseur PR, Williams SM, Smith MS, Marks DL, Grove KL (2010) Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet. Endocrinology. 151:1622–1632. https://doi.org/10.1210/en.2009-1019
doi: 10.1210/en.2009-1019
pubmed: 20176722
pmcid: 2850229
García-Cáceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, Jastroch M, Johansson P et al (2016) Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell. 166:867–880. https://doi.org/10.1016/j.cell.2016.07.028
doi: 10.1016/j.cell.2016.07.028
pubmed: 27518562
Horvath TL, Sarman B, García-Cáceres C, Enriori PJ, Sotonyi P, Shanabrough M, Borok E, Argente J et al (2010) Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci U S A 107:14875–14880. https://doi.org/10.1073/pnas.1004282107
doi: 10.1073/pnas.1004282107
pubmed: 20679202
pmcid: 2930476
Fuente-Martín E, García-Cáceres C, Granado M, de Ceballos ML, Sánchez-Garrido MÁ, Sarman B, Liu ZW, Dietrich MO et al (2012) Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J. Cli. Invest 122:3900–3913. https://doi.org/10.1172/JCI64102
doi: 10.1172/JCI64102
Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J, Liu ZW, Zimmer MR et al (2014) Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat Neurosci 17:908–910. https://doi.org/10.1038/nn.3725
doi: 10.1038/nn.3725
pubmed: 24880214
Friedman JM (2014) 20 years of leptin: leptin at 20: an overview. J Endocrinol 223:T1-8. https://doi.org/10.1530/JOE-14-0405
Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, Rasika S, Falluel-Morel A et al (2014) Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab 19:293–301. https://doi.org/10.1016/j.cmet.2013.12.015
doi: 10.1016/j.cmet.2013.12.015
pubmed: 24506870
pmcid: 3936883
Farzampour Z, Reimer RJ, Huguenard J (2015) Endozepines. Adv Pharmacol 72:147–164. https://doi.org/10.1016/bs.apha.2014.10.005
doi: 10.1016/bs.apha.2014.10.005
pubmed: 25600369
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D et al (2020) Endozepines and their receptors: structure, functions and pathophysiological significance. Pharmacol Ther 208:107386. https://doi.org/10.1016/j.pharmthera.2019.06.008
Tonon MC, Désy L, Nicolas P, Vaudry H, Pelletier G (1990) Immunocytochemical localization of the endogenous benzodiazepine ligand octadecaneuropeptide (ODN) in the rat brain. Neuropeptides 15:17–24. https://doi.org/10.1016/0143-4179(90)90155-r
Guillebaud F, Girardet C, Abysique A, Gaigé S, Barbouche R, Verneuil J, Jean A, Leprince J et al (2017) Glial endozepines inhibit feeding-related autonomic functions by acting at the brainstem level. Front Neurosci 11:308. https://doi.org/10.3389/fnins.2017.00308
doi: 10.3389/fnins.2017.00308
pubmed: 28611581
pmcid: 5447764
De Mateos-Verchere JG, Leprince J, Tonon MC, Vaudry H, Costentin J (2001) The octadecaneuropeptide [diazepam-binding inhibitor (33-50)] exerts potent anorexigenic effects in rodents. Eur J Pharmacol 414:225–231. https://doi.org/10.1016/s0014-2999(01)00771-3
doi: 10.1016/s0014-2999(01)00771-3
pubmed: 11239923
Matsuda K, Wada K, Miura T, Maruyama K, Shimakura SI, Uchiyama M, Leprince J, Tonon MC et al (2007) Effect of the diazepam-binding inhibitor-derived peptide, octadecaneuropeptide, on food intake in goldfish. Neuroscience. 150:425–432. https://doi.org/10.1016/j.neuroscience.2007.09.012
doi: 10.1016/j.neuroscience.2007.09.012
pubmed: 17936516
Lanfray D, Arthaud S, Ouellet J, Compère V, Do Rego JL, Leprince J, Lefranc B, Castel H et al (2013) Gliotransmission and brain glucose sensing: Critical role of endozepines. Diabetes 62:801–810. https://doi.org/10.2337/db11-0785
doi: 10.2337/db11-0785
pubmed: 23160530
pmcid: 3581199
do Rego JC, Orta MH, Leprince J, Tonon MC, Vaudry H, Costentin J (2007) Pharmacological characterization of the receptor mediating the anorexigenic action of the octadecaneuropeptide: evidence for an endozepinergic tone regulating food intake. Neuropsychopharmacology 32:1641–1648. https://doi.org/10.1038/sj.npp.1301280
doi: 10.1038/sj.npp.1301280
pubmed: 17151595
Compère V, Li S, Leprince J, Tonon MC, Vaudry H, Pelletier G (2003) Effect of intracerebroventricular administration of the octadecaneuropeptide on the expression of pro-opiomelanocortin, neuropeptide Y and corticotropin-releasing hormone mRNAs in rat hypothalamus. J Neuroendocrinol 15:197–203. https://doi.org/10.1046/j.1365-2826.2003.00970.x
Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL (2004) Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304:110–115. https://doi.org/10.1126/science.1089459
doi: 10.1126/science.1089459
pubmed: 15064421
Leprince J, Gandolfo P, Thoumas JL, Patte C, Fauchère JL, Vaudry H, Tonon MC (1998) Structure-activity relationships of a series of analogues of the octadecaneuropeptide ODN on calcium mobilization in rat astrocytes. J Med Chem 41:4433–4438. https://doi.org/10.1021/jm980275d
doi: 10.1021/jm980275d
pubmed: 9804683
Gaigé S, Djelloul M, Tardivel C, Airault C, Félix B, Jean A, Lebrun B, Troadec JD et al (2014) Modification of energy balance induced by the food contaminant T-2 toxin: a multimodal gut-to-brain connection. Brain Behav Immun 37:54–72. https://doi.org/10.1016/j.bbi.2013.12.008
doi: 10.1016/j.bbi.2013.12.008
pubmed: 24355099
Bellefontaine N, Chachlaki K, Parkash J, Vanacker C, Colledge W, d’Anglemont de Tassigny X, Garthwaite J, Bouret SG et al (2014) Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. J. Clin. Invest 124:2550–2559. https://doi.org/10.1172/JCI65928
doi: 10.1172/JCI65928
pubmed: 24812663
pmcid: 4089460
Girardet C, Bonnet MS, Jdir R, Sadoud M, Thirion S, Tardivel C, Roux J, Lebrun B et al (2016) The food-contaminant deoxynivalenol modifies eating by targeting anorexigenic neurocircuitry. PLoS One 6:e26134. https://doi.org/10.1371/journal.pone.0026134
doi: 10.1371/journal.pone.0026134
Dallaporta M, Pecchi E, Pio J, Jean A, Horner KC, Troadec JD (2009) Expression of leptin receptor by glial cells of the nucleus tractus solitarius: possible involvement in energy homeostasis. J Neuroendocrinol 21:57–67. https://doi.org/10.1111/j.1365-2826.2008.01799.x
doi: 10.1111/j.1365-2826.2008.01799.x
pubmed: 19094094
Mehlem A, Hagberg CE, Muhl L, Eriksson U, Falkevall A (2013) Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat. Protoc 8:1149–1154. https://doi.org/10.1038/nprot.2013.055
doi: 10.1038/nprot.2013.055
pubmed: 23702831
Andrey P, Maurin Y (2005) Free-D: an integrated environment for three-dimensional reconstruction from serial sections. J Neurosci Methods 45:233–244. https://doi.org/10.1016/j.jneumeth.2005.01.006
doi: 10.1016/j.jneumeth.2005.01.006
Ghouili I, Bahdoudi S, Morin F, Amri F, Hamdi Y, Coly PM, Walet-Balieu ML, Leprince J et al (2018) Endogenous expression of ODN-related peptides in astrocytes contributes to cell protection against oxidative stress: astrocyte-neuron crosstalk relevance for neuronal survival. Mol Neurobiol 55:4596–4611. https://doi.org/10.1007/s12035-017-0630-3
doi: 10.1007/s12035-017-0630-3
pubmed: 28698967
Vaudry H, Tonon MC, Delarue C, Vaillant R, Kraicer J (1978) Biological and radioimmunological evidence for melanocyte stimulating hormones (MSH) of extrapituitary origin in the rat brain. Neuroendocrinology. 27:9–24. https://doi.org/10.1159/000122796
doi: 10.1159/000122796
pubmed: 732945
Pecchi E, Dallaporta M, Charrier C, Pio J, Jean A, Moyse E, Troadec JD (2007) Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat. J Comp Neurol 501:353–368. https://doi.org/10.1002/cne.21259
doi: 10.1002/cne.21259
pubmed: 17245710
Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B (2013) Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol 521:3389–3405. https://doi.org/10.1002/cne.23355
doi: 10.1002/cne.23355
pubmed: 23649873
pmcid: 3973970
Hokfelt T, Foster G, Schultzberg M, Meister B, Schalling M, Goldstein M, Hemmings HC Jr, Ouimet C et al (1988) DARPP-32 as a marker for D-1 dopaminoceptive cells in the rat brain: prenatal development and presence in glial elements (tanycytes) in the basal hypothalamus. Adv Exp Med Biol 235:65–82. https://doi.org/10.1007/978-1-4899-2723-1_6
doi: 10.1007/978-1-4899-2723-1_6
pubmed: 2976255
Sidibe A, Mullier A, Chen P, Baroncini M, Boutin JA, Delagrange P, Prevot V, Jockers R (2010) Expression of the orphan GPR50 protein in rodent and human dorsomedial hypothalamus, tanycytes and median eminence. J Pineal Res 48:263–269. https://doi.org/10.1111/j.1600-079X.2010.00750.x
doi: 10.1111/j.1600-079X.2010.00750.x
pubmed: 20210849
Barrachina MD, Martínez V, Wang L, Wei JY, Taché Y (1997) Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci U S A 94:10455–10460. https://doi.org/10.1073/pnas.94.19.10455
doi: 10.1073/pnas.94.19.10455
pubmed: 9294232
pmcid: 23384
Halpern Z, Elinav E, Gertler A (2011) Development and characterization of high affinity leptins and leptin antagonists. J Biol Chem 286:4429–4442. https://doi.org/10.1074/jbc.M110.196402
doi: 10.1074/jbc.M110.196402
pubmed: 21119198
Frayling C, Britton R, Dale N (2011) ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol 589:2275–2286. https://doi.org/10.1113/jphysiol.2010.202051
doi: 10.1113/jphysiol.2010.202051
pubmed: 21486800
pmcid: 3098703
Prevot V, Dehouck B, Sharif A, Ciofi P, Giaconini P, Clasadonte J (2018) The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr Rev 39:333–368. https://doi.org/10.1210/er.2017-00235
doi: 10.1210/er.2017-00235
pubmed: 29351662
Parkash J, Messina A, Langlet F, Cimino I, Loyens A, Mazur D, Gallet S, Balland E et al (2015) Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat Commun 6:6385. https://doi.org/10.1038/ncomms7385
doi: 10.1038/ncomms7385
pubmed: 25721933
pmcid: 4351556
Alho H, Fremeau RT Jr, Tiedge H, Wilcox J, Bovolin P, Brosius J, Roberts JL, Costa E (1988) Diazepam binding inhibitor gene expression: location in brain and peripheral tissues of rat. Proc Natl Acad Sci U S A 85:7018–7022. https://doi.org/10.1073/pnas.85.18.7018
doi: 10.1073/pnas.85.18.7018
pubmed: 3413133
pmcid: 282111
Seeley RJ, Blake K, Rushing PA, Benoit S, Eng J, Woods SC, D’Alessio D (2000) The role of CNS glucagon-like peptide-1 (7-36) amide receptors in mediating the visceral illness effects of lithium chloride. J Neurosci 20:1616–1621. https://doi.org/10.1523/JNEUROSCI.20-04-01616.2000
Yamamoto K, Yamatodani A (2018) Strain differences in the development of cisplatin-induced pica behavior in mice. J Pharmacol Toxicol Methods 91:66–71. https://doi.org/10.1016/j.vascn.2018.01.559
doi: 10.1016/j.vascn.2018.01.559
pubmed: 29407728
van Swieten MM, Pandit R, Adan RA, van der Plasse G (2014) The neuroanatomical function of leptin in the hypothalamus. J. Chem. Neuroanat 61-62:207–220. https://doi.org/10.1016/j.jchemneu.2014.05.004
doi: 10.1016/j.jchemneu.2014.05.004
pubmed: 25007719
Dragunow M, Faull R (1989) The use of c-Fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29:261–265. https://doi.org/10.1016/0304-3940(90)90341-6
Bouyakdan K, Martin H, Liénard F, Budry L, Taib B, Rodaros D, Chrétien C, Biron É et al (2019) The gliotransmitter ACBP controls feeding and energy homeostasis via the melanocortin system. J Clin Invest 130:2417–2430. https://doi.org/10.1172/JCI123454
doi: 10.1172/JCI123454
Zhan C, Zhou J, Feng Q, Zhang JE, Lin S, Bao J, Wu P, Luo M (2013) Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci 33:3624–3632. https://doi.org/10.1523/JNEUROSCI.2742-12.2013
doi: 10.1523/JNEUROSCI.2742-12.2013
pubmed: 23426689
pmcid: 6619547
Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M et al (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 443:709–712. https://doi.org/10.1038/nature05162
doi: 10.1038/nature05162
pubmed: 17036007
Bonnet MS, Pecchi E, Trouslard J, Jean A, Dallaporta M, Troadec JD (2009) Central nesfatin-1-expressing neurons are sensitive to peripheral inflammatory stimulus. J. Neuroinflammation 6:27. https://doi.org/10.1186/1742-2094-6-27
doi: 10.1186/1742-2094-6-27
pubmed: 19778412
pmcid: 2762958
Shimizu H, Ohsaki A, Oh-I S, Okada S, Mori M (2009) A new anorexigenic protein, nesfatin-1. Peptides 30:995–998. https://doi.org/10.1016/j.peptides.2009.01.002
Katsurada K, Maejima Y, Nakata M, Kodaira M, Suyama S, Iwasaki Y, Kario K, Yada T (2014) Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons. Biochem Biophys Res Commun 451:276–281. https://doi.org/10.1016/j.bbrc.2014.07.116
doi: 10.1016/j.bbrc.2014.07.116
pubmed: 25089000
Yettefti K, Orsini JC, el Ouazzani T, Himmi T, Boyer A, Perrin J (1995) Sensitivity of nucleus tractus solitarius neurons to induced moderate hyperglycemia, with special reference to catecholaminergic regions. J Auton Nerv Syst 51:191–197. https://doi.org/10.1016/0165-1838(94)00130-c
Gandolfo P, Patte C, Leprince J, Thoumas J-L, Vaudry H, Tonon M-C (1997) The stimulatory effect of the octadecaneuropeptide (ODN) on cytosolic Ca
doi: 10.1016/s0014-2999(97)00012-5
pubmed: 9098698
Lamacz M, Tonon MC, Smih-Rouet F, Patte C, Gasque P, Fontaine M, Vaudry H (1996) The endogenous benzodiazepine receptor ligand ODN increases cytosolic calcium in cultured rat astrocytes. Mol Brain Res 37:290–296. https://doi.org/10.1016/0169-328x(95)00330-u
Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ et al (2003) STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature. 421:856–859. https://doi.org/10.1038/nature01388
doi: 10.1038/nature01388
pubmed: 12594516
Gao Q, Wolfgang MJ, Neschen S, Morino K, Horvath TL, Shulman GI, Fu XY (2004) Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc Natl Acad Sci U S A 101:4661–4666. https://doi.org/10.1073/pnas.0303992101
doi: 10.1073/pnas.0303992101
pubmed: 15070774
pmcid: 384803
Lanfray D, Caron A, Roy MC, Laplante M, Morin F, Leprince J, Tonon MC, Richard D (2016) Involvement of the acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice. Elife. 5:e11742. https://doi.org/10.7554/eLife.11742
doi: 10.7554/eLife.11742
pubmed: 26880548
pmcid: 4821795
Myers MG, Cowley MA, Munzberg H (2008) Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70:537–556. https://doi.org/10.1146/annurev.physiol.70.113006.100707
doi: 10.1146/annurev.physiol.70.113006.100707
pubmed: 17937601
Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL et al (1996) Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348:159–161. https://doi.org/10.1016/s0140-6736(96)03173-x
El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS (2000) Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest 105:1827–1832. https://doi.org/10.1016/s0140-6736(96)03173-x
doi: 10.1016/s0140-6736(96)03173-x
pubmed: 10862798
pmcid: 378516
Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D Jr (1996) Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med 2:589–593. https://doi.org/10.1038/nm0596-589
Hamdi Y, Kaddour H, Vaudry D, Bahdoudi S, Douiri S, Leprince J, Castel H, Vaudry H et al (2012) The octadecaneuropeptide ODN protects astrocytes against hydrogen peroxide-induced apoptosis via a PKA/MAPK-dependent mechanism. PLoS One 7:e42498. https://doi.org/10.1371/journal.pone.0042498
doi: 10.1371/journal.pone.0042498
pubmed: 22927932
pmcid: 3424241
Maniscalco JW, Rinaman L (2014) Systemic leptin dose-dependently increases STAT3 phosphorylation within hypothalamic and hindbrain nuclei. Am J Phys 306:R576–R585. https://doi.org/10.1152/ajpregu.00017.2014
doi: 10.1152/ajpregu.00017.2014
Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Reombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 269:546–549. https://doi.org/10.1126/science.7624778
doi: 10.1126/science.7624778
pubmed: 7624778
Balland E, Cowley MA (2015) New insights in leptin resistance mechanisms in mice. Front Neuroendocrinol 39:59–65. https://doi.org/10.1016/j.yfrne.2015.09.004
doi: 10.1016/j.yfrne.2015.09.004
pubmed: 26410445
Baskin DG, Seeley RJ, Kuijper JL, Lok S, Weigle D, Erickson JC, Palmiter RD, Schwartz MW (1998) Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting. Diabetes. 47:538–543. https://doi.org/10.2337/diabetes.47.4.538
doi: 10.2337/diabetes.47.4.538
pubmed: 9568684
Ottaway N, Mahbod P, Rivero B, Norman LA, Gertler A, D'Alessio DA, Perez-Tilve D (2015) Diet-induced obese mice retain endogenous leptin action. Cell Metab 21:877–882. https://doi.org/10.1016/j.cmet.2015.04.015
doi: 10.1016/j.cmet.2015.04.015
pubmed: 25980347
pmcid: 4456263
Knight ZA, Hannan KS, Greenberg ML, Friedman JM (2010) Hyperleptinemia is required for the development of leptin resistance. PLoS One 5:e11376. https://doi.org/10.1371/journal.pone.0011376
doi: 10.1371/journal.pone.0011376
pubmed: 20613882
pmcid: 2894068