Imaging characteristics of intravascular spherical contrast agents for grating-based x-ray dark-field imaging - effects of concentrations, spherical sizes and applied voltage.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
10 06 2020
Historique:
received: 15 02 2020
accepted: 14 05 2020
entrez: 12 6 2020
pubmed: 12 6 2020
medline: 24 11 2020
Statut: epublish

Résumé

This study investigates the x-ray scattering characteristics of microsphere particles in x-ray-grating-based interferometric imaging at different concentrations, bubble sizes and tube voltages (kV). Attenuation (ATI), dark-field (DFI) and phase-contrast (PCI) images were acquired. Signal-to-noise (SNR) and contrast-to-noise ratios with water (CNR

Identifiants

pubmed: 32523085
doi: 10.1038/s41598-020-66395-x
pii: 10.1038/s41598-020-66395-x
pmc: PMC7287139
doi:

Substances chimiques

Contrast Media 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9405

Références

Snigirev, A., Snigireva, I., Kohn, V., Kuznetsov, S. & Schelokov, I. On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Review of Scientific Instruments. Review of Scientific Instruments 66, 5486 (1995).
doi: 10.1063/1.1146073
Cloetens, P. et al. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays. Applied Physics Letters 75, 2912 (1999).
doi: 10.1063/1.125225
Davis, T., Gao, D., Gureyev, T., Stevenson, A. & Wilkens, S. Phase contrast imaging of weakly absorbing materials using hard x-rays. Nature 373, 595 (1995).
doi: 10.1038/373595a0
Chapman, D. et al. Diffraction enhanced x-ray imaging. Physics in Medicine and Biology. Physics in Medicine and Biology 42, 2015–2025 (1997).
doi: 10.1088/0031-9155/42/11/001
Olivo, A. et al. An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field. Medical Physics 28, 1610–1619 (2001).
doi: 10.1118/1.1388219
Bonse, U. & Hart, M. An x-ray interferometer. Applied Physics Letters 6, 155 (1965).
Momose, A. et al. Demonstration of x-ray Talbot interferometry. Japanese Journal of Applied Physics 42, L 866–L 868 (2003).
doi: 10.1143/JJAP.42.L866
Weitkamp, T. et al. X-ray phase imaging with a grating interferometer. Optic express 13, 6296–6304 (2005).
doi: 10.1364/OPEX.13.006296
Pfeiffer, F., Weitkamp, T., Bunk, O. & David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray source. Nature Physics 2, 258–261 (2006).
doi: 10.1038/nphys265
Donath, T. et al. Toward clinical X-ray phase-contrast CT: Demonstration of enhanced soft-tissue contrast in human specimen. Investigative radiology 45, 445–452 (2010).
doi: 10.1097/RLI.0b013e3181e21866
Notohamiprodjo, S. et al. Qualitative and Quantitative Evaluation of structural Myocardial Alteration by Grating-Based-Phase-Contrast Computed Tomography. Investigative radiology 53, 26–34 (2018).
doi: 10.1097/RLI.0000000000000408
Bech, M. et al. Soft-tissue phase-contrast tomography with an X-ray tube source. Physics in medicine and biology 54, 2747–2753 (2009).
doi: 10.1088/0031-9155/54/9/010
Bech, M. et al. Advanced contrast modalities for x-ray radiology: Phase-contrast and dark-field imaging using a grating interferometer. Zeitschrift für medizinische Physik 20, 7–16 (2010).
doi: 10.1016/j.zemedi.2009.11.003
Pfeiffer, F. et al. X-ray dark-field and phase-contrast imaging using a grating interferometer. Journal of Applied Physics 105, 102006 (2009).
doi: 10.1063/1.3115639
Pfeiffer, F. et al. Hard-x-ray dark-field imaging using a grating interferometer. Nat Mater. 7, 134–137 (2008).
doi: 10.1038/nmat2096
Dawson, P. X-ray contrast-enhancing agents. European Journal of Radioliology 23, 172–177 (1996).
doi: 10.1016/S0720-048X(96)01086-8
Christiansen, C. X-ray contrast media – an overview. Toxicology 209, 185–187 (2005).
doi: 10.1016/j.tox.2004.12.020
Cohan, R. & Dunnick, N. Intravascular contrast media: adverse reactions. Am J Roentgenol. 149, 665–670 (1987).
doi: 10.2214/ajr.149.4.665
Morcos, S. & Thomsen, H. Adverse reactions to iodinated contrast media. European Radiology 11, 1267–1275 (2001).
doi: 10.1007/s003300000729
Blomley, M., Cooke, J., Unger, E., Monaghan, M. & Cosgrove, D. Microbubble contrast agents: a new era in ultrasound. BMJ 322, 1222–1225 (2001).
doi: 10.1136/bmj.322.7296.1222
Stewart, V. & Sidhu, P. New directions in ultrasound: microbubble contrast. Br. J. Radiol. 79, 188–194 (2006).
doi: 10.1259/bjr/17790547
Arfelli, F., Rigon, L. & Menk, R. Microbubbles as x-ray scattering contrast agents using analyzer-based imaging. Phys. Med. Biol. 55, 1643–1658 (2010).
doi: 10.1088/0031-9155/55/6/008
Ter Haar, G. Safety and bio-effects of ultrasound contrast agents. Med Biol Eng Comput 47, 893–900 (2009).
doi: 10.1007/s11517-009-0507-3
Appis, A., Tracy, M. & Feinstein, S. Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res Pract 2 Jun 1, R 55–62, https://doi.org/10.1530/ERP-15-0018 . Epub 2015 Apr 22 (2015).
Millard, T. et al. Evaluation of microbubble contrast agents for dynamic imaging with x-ray phase contrast. Scientific Reports 5, 12509, https://doi.org/10.1038/srep12509 (2015).
doi: 10.1038/srep12509 pubmed: 26219661 pmcid: 4518216
Kogan, P. & Gessner, R. & Dayton, P. Microbubles in imaging: applications beyond ultrasound. Bubble Sci. Eng. Technol. 2, 3–8 (2010).
doi: 10.1179/175889610X12730566149100
Velroyen, A. et al. Microbubbles as a scattering contrast agent for grating-based x-ray dark-field imaging. Phys. Med. Biol. 58, N 37–46 (2013).
doi: 10.1088/0031-9155/58/4/N37
Bech, M. et al. In-vivo dark-field and phase-contrast x-ray imaging. Scientific Reports 3, 3209, https://doi.org/10.1038/srep03209 (2013).
doi: 10.1038/srep03209 pubmed: 24220606 pmcid: 3826096
Velroyen, A. et al. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging. Plos One 10, e0129512, https://doi.org/10.1371/journal.pone.0129512 (2015).
doi: 10.1371/journal.pone.0129512 pubmed: 26134130 pmcid: 4489901
Hauke, C. et al. Analytical and simulative investigations of moiré artefacts in Talbot-lau x-ray imaging. Optic Express 25, 32897–32909 (2017).
doi: 10.1364/OE.25.032897
Millard, T. et al. Quantification of microbubble concentration through x-ray phase contrast imaging. Appl. Phys. Lett. 103, 114105 (2013).
doi: 10.1063/1.4821277
Lynch, S. et al. Interpretation of dark-field contrast and particle-size selectivity in grating interferometers. Appl. Opt. 50, 4310–4319 (2011).
doi: 10.1364/AO.50.004310
Millard, T. Microbubbles as a quantitative contrast agent for x-ray phase contrast imaging. PhD thesis, University College London, (2014).
Velroyen, A. et al. Grating-based x-ray Dark-field Computed Tomography of Living Mice. EBioMedicine 2, 1500–1506 (2015).
doi: 10.1016/j.ebiom.2015.08.014
Hellbach, K. et al. Depiction of pneumothoraces in a large animal model using x-ray dark-field radiography. Scientific Reports 8, 2602, https://doi.org/10.1038/s41598-018-20985-y (2018).
doi: 10.1038/s41598-018-20985-y pubmed: 29422512 pmcid: 5805747
Hetterich, H. et al. Dark-field imaging in coronary atherosclerosis. European Journal of Radiology 94, 38–45 (2017).
doi: 10.1016/j.ejrad.2017.07.018
Grohmann, L. et al. In-vivo X-ray Dark-Field Chest Radiography of a Pig. Scientific Reports 7, 4807, https://doi.org/10.1038/s41598-017-05101-w (2017).
doi: 10.1038/s41598-017-05101-w
Anton, G. et al. Grating-based dark-field imaging of human breast tissue. Z. Med. Phys. 23, 228–235 (2013).
doi: 10.1016/j.zemedi.2013.01.001
Hellbach, K. et al. Improved Detection of Foreign Bodies on Radiographs Using X-ray Dark-Field and Phase-Contrast Imaging. Invest Radiol 53, 352–356, https://doi.org/10.1097/RLI.0000000000000450 (2018).
doi: 10.1097/RLI.0000000000000450 pubmed: 29420322
Hauke, C. et al. A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects. Med Phys 45, 2565–2571, https://doi.org/10.1002/mp.12889 (2018).
doi: 10.1002/mp.12889 pubmed: 29582440
Hauke, C. et al. Enhanced reconstruction algorithm for moire artifact suppression in Talbot-Lau x-ray imaging. Phys Med Biol 63, 135018, https://doi.org/10.1088/1361-6560/aacb07 (2018).
doi: 10.1088/1361-6560/aacb07 pubmed: 29968576
Schneider, M. SonoVue, a new ultrasound contrast agent. Eur. Radiol. 9, 347–348 (1999).
doi: 10.1007/PL00014071

Auteurs

Susan Notohamiprodjo (S)

Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. s.notohamiprodjo@tum.de.
Department of Radiology, University Hospital, LMU Munich, Munich, Germany. s.notohamiprodjo@tum.de.

Karla Maria Treitl (KM)

Department of Radiology, University Hospital, LMU Munich, Munich, Germany.

Christian Hauke (C)

Siemens Healthcare GmbH, Forchheim, Germany.
Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.

Sven-Martin Sutter (SM)

Siemens Healthcare GmbH, Forchheim, Germany.

Sigrid Auweter (S)

Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
Smart Reporting GmbH, Munich, Germany.

Franz Pfeiffer (F)

Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany.

Maximilian Ferdinand Reiser (MF)

Department of Radiology, University Hospital, LMU Munich, Munich, Germany.

Katharina Hellbach (K)

Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, University of Heidelberg, Heidelberg, Germany.

Articles similaires

Failed radial head arthroplasty treated by removal of the implant.

Juan Ameztoy Gallego, Blanca Diez Sanchez, Afonso Vaquero-Picado et al.
1.00
Humans Male Female Middle Aged Range of Motion, Articular
Humans Shoulder Fractures Tomography, X-Ray Computed Neural Networks, Computer Female
Humans Arthroplasty, Replacement, Knee Osteoarthritis, Knee Awards and Prizes Biomechanical Phenomena
Humans Arthroplasty, Replacement, Knee Male Female Aged

Classifications MeSH