Imaging characteristics of intravascular spherical contrast agents for grating-based x-ray dark-field imaging - effects of concentrations, spherical sizes and applied voltage.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 06 2020
10 06 2020
Historique:
received:
15
02
2020
accepted:
14
05
2020
entrez:
12
6
2020
pubmed:
12
6
2020
medline:
24
11
2020
Statut:
epublish
Résumé
This study investigates the x-ray scattering characteristics of microsphere particles in x-ray-grating-based interferometric imaging at different concentrations, bubble sizes and tube voltages (kV). Attenuation (ATI), dark-field (DFI) and phase-contrast (PCI) images were acquired. Signal-to-noise (SNR) and contrast-to-noise ratios with water (CNR
Identifiants
pubmed: 32523085
doi: 10.1038/s41598-020-66395-x
pii: 10.1038/s41598-020-66395-x
pmc: PMC7287139
doi:
Substances chimiques
Contrast Media
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9405Références
Snigirev, A., Snigireva, I., Kohn, V., Kuznetsov, S. & Schelokov, I. On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Review of Scientific Instruments. Review of Scientific Instruments 66, 5486 (1995).
doi: 10.1063/1.1146073
Cloetens, P. et al. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays. Applied Physics Letters 75, 2912 (1999).
doi: 10.1063/1.125225
Davis, T., Gao, D., Gureyev, T., Stevenson, A. & Wilkens, S. Phase contrast imaging of weakly absorbing materials using hard x-rays. Nature 373, 595 (1995).
doi: 10.1038/373595a0
Chapman, D. et al. Diffraction enhanced x-ray imaging. Physics in Medicine and Biology. Physics in Medicine and Biology 42, 2015–2025 (1997).
doi: 10.1088/0031-9155/42/11/001
Olivo, A. et al. An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field. Medical Physics 28, 1610–1619 (2001).
doi: 10.1118/1.1388219
Bonse, U. & Hart, M. An x-ray interferometer. Applied Physics Letters 6, 155 (1965).
Momose, A. et al. Demonstration of x-ray Talbot interferometry. Japanese Journal of Applied Physics 42, L 866–L 868 (2003).
doi: 10.1143/JJAP.42.L866
Weitkamp, T. et al. X-ray phase imaging with a grating interferometer. Optic express 13, 6296–6304 (2005).
doi: 10.1364/OPEX.13.006296
Pfeiffer, F., Weitkamp, T., Bunk, O. & David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray source. Nature Physics 2, 258–261 (2006).
doi: 10.1038/nphys265
Donath, T. et al. Toward clinical X-ray phase-contrast CT: Demonstration of enhanced soft-tissue contrast in human specimen. Investigative radiology 45, 445–452 (2010).
doi: 10.1097/RLI.0b013e3181e21866
Notohamiprodjo, S. et al. Qualitative and Quantitative Evaluation of structural Myocardial Alteration by Grating-Based-Phase-Contrast Computed Tomography. Investigative radiology 53, 26–34 (2018).
doi: 10.1097/RLI.0000000000000408
Bech, M. et al. Soft-tissue phase-contrast tomography with an X-ray tube source. Physics in medicine and biology 54, 2747–2753 (2009).
doi: 10.1088/0031-9155/54/9/010
Bech, M. et al. Advanced contrast modalities for x-ray radiology: Phase-contrast and dark-field imaging using a grating interferometer. Zeitschrift für medizinische Physik 20, 7–16 (2010).
doi: 10.1016/j.zemedi.2009.11.003
Pfeiffer, F. et al. X-ray dark-field and phase-contrast imaging using a grating interferometer. Journal of Applied Physics 105, 102006 (2009).
doi: 10.1063/1.3115639
Pfeiffer, F. et al. Hard-x-ray dark-field imaging using a grating interferometer. Nat Mater. 7, 134–137 (2008).
doi: 10.1038/nmat2096
Dawson, P. X-ray contrast-enhancing agents. European Journal of Radioliology 23, 172–177 (1996).
doi: 10.1016/S0720-048X(96)01086-8
Christiansen, C. X-ray contrast media – an overview. Toxicology 209, 185–187 (2005).
doi: 10.1016/j.tox.2004.12.020
Cohan, R. & Dunnick, N. Intravascular contrast media: adverse reactions. Am J Roentgenol. 149, 665–670 (1987).
doi: 10.2214/ajr.149.4.665
Morcos, S. & Thomsen, H. Adverse reactions to iodinated contrast media. European Radiology 11, 1267–1275 (2001).
doi: 10.1007/s003300000729
Blomley, M., Cooke, J., Unger, E., Monaghan, M. & Cosgrove, D. Microbubble contrast agents: a new era in ultrasound. BMJ 322, 1222–1225 (2001).
doi: 10.1136/bmj.322.7296.1222
Stewart, V. & Sidhu, P. New directions in ultrasound: microbubble contrast. Br. J. Radiol. 79, 188–194 (2006).
doi: 10.1259/bjr/17790547
Arfelli, F., Rigon, L. & Menk, R. Microbubbles as x-ray scattering contrast agents using analyzer-based imaging. Phys. Med. Biol. 55, 1643–1658 (2010).
doi: 10.1088/0031-9155/55/6/008
Ter Haar, G. Safety and bio-effects of ultrasound contrast agents. Med Biol Eng Comput 47, 893–900 (2009).
doi: 10.1007/s11517-009-0507-3
Appis, A., Tracy, M. & Feinstein, S. Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res Pract 2 Jun 1, R 55–62, https://doi.org/10.1530/ERP-15-0018 . Epub 2015 Apr 22 (2015).
Millard, T. et al. Evaluation of microbubble contrast agents for dynamic imaging with x-ray phase contrast. Scientific Reports 5, 12509, https://doi.org/10.1038/srep12509 (2015).
doi: 10.1038/srep12509
pubmed: 26219661
pmcid: 4518216
Kogan, P. & Gessner, R. & Dayton, P. Microbubles in imaging: applications beyond ultrasound. Bubble Sci. Eng. Technol. 2, 3–8 (2010).
doi: 10.1179/175889610X12730566149100
Velroyen, A. et al. Microbubbles as a scattering contrast agent for grating-based x-ray dark-field imaging. Phys. Med. Biol. 58, N 37–46 (2013).
doi: 10.1088/0031-9155/58/4/N37
Bech, M. et al. In-vivo dark-field and phase-contrast x-ray imaging. Scientific Reports 3, 3209, https://doi.org/10.1038/srep03209 (2013).
doi: 10.1038/srep03209
pubmed: 24220606
pmcid: 3826096
Velroyen, A. et al. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging. Plos One 10, e0129512, https://doi.org/10.1371/journal.pone.0129512 (2015).
doi: 10.1371/journal.pone.0129512
pubmed: 26134130
pmcid: 4489901
Hauke, C. et al. Analytical and simulative investigations of moiré artefacts in Talbot-lau x-ray imaging. Optic Express 25, 32897–32909 (2017).
doi: 10.1364/OE.25.032897
Millard, T. et al. Quantification of microbubble concentration through x-ray phase contrast imaging. Appl. Phys. Lett. 103, 114105 (2013).
doi: 10.1063/1.4821277
Lynch, S. et al. Interpretation of dark-field contrast and particle-size selectivity in grating interferometers. Appl. Opt. 50, 4310–4319 (2011).
doi: 10.1364/AO.50.004310
Millard, T. Microbubbles as a quantitative contrast agent for x-ray phase contrast imaging. PhD thesis, University College London, (2014).
Velroyen, A. et al. Grating-based x-ray Dark-field Computed Tomography of Living Mice. EBioMedicine 2, 1500–1506 (2015).
doi: 10.1016/j.ebiom.2015.08.014
Hellbach, K. et al. Depiction of pneumothoraces in a large animal model using x-ray dark-field radiography. Scientific Reports 8, 2602, https://doi.org/10.1038/s41598-018-20985-y (2018).
doi: 10.1038/s41598-018-20985-y
pubmed: 29422512
pmcid: 5805747
Hetterich, H. et al. Dark-field imaging in coronary atherosclerosis. European Journal of Radiology 94, 38–45 (2017).
doi: 10.1016/j.ejrad.2017.07.018
Grohmann, L. et al. In-vivo X-ray Dark-Field Chest Radiography of a Pig. Scientific Reports 7, 4807, https://doi.org/10.1038/s41598-017-05101-w (2017).
doi: 10.1038/s41598-017-05101-w
Anton, G. et al. Grating-based dark-field imaging of human breast tissue. Z. Med. Phys. 23, 228–235 (2013).
doi: 10.1016/j.zemedi.2013.01.001
Hellbach, K. et al. Improved Detection of Foreign Bodies on Radiographs Using X-ray Dark-Field and Phase-Contrast Imaging. Invest Radiol 53, 352–356, https://doi.org/10.1097/RLI.0000000000000450 (2018).
doi: 10.1097/RLI.0000000000000450
pubmed: 29420322
Hauke, C. et al. A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects. Med Phys 45, 2565–2571, https://doi.org/10.1002/mp.12889 (2018).
doi: 10.1002/mp.12889
pubmed: 29582440
Hauke, C. et al. Enhanced reconstruction algorithm for moire artifact suppression in Talbot-Lau x-ray imaging. Phys Med Biol 63, 135018, https://doi.org/10.1088/1361-6560/aacb07 (2018).
doi: 10.1088/1361-6560/aacb07
pubmed: 29968576
Schneider, M. SonoVue, a new ultrasound contrast agent. Eur. Radiol. 9, 347–348 (1999).
doi: 10.1007/PL00014071