Type 1 diabetes genetic risk score is discriminative of diabetes in non-Europeans: evidence from a study in India.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
11 06 2020
11 06 2020
Historique:
received:
16
06
2019
accepted:
02
03
2020
entrez:
13
6
2020
pubmed:
13
6
2020
medline:
1
12
2020
Statut:
epublish
Résumé
Type 1 diabetes (T1D) is a significant problem in Indians and misclassification of T1D and type 2 diabetes (T2D) is a particular problem in young adults in this population due to the high prevalence of early onset T2D at lower BMI. We have previously shown a genetic risk score (GRS) can be used to discriminate T1D from T2D in Europeans. We aimed to test the ability of a T1D GRS to discriminate T1D from T2D and controls in Indians. We studied subjects from Pune, India of Indo-European ancestry; T1D (n = 262 clinically defined, 200 autoantibody positive), T2D (n = 345) and controls (n = 324). We used the 9 SNP T1D GRS generated in Europeans and assessed its ability to discriminate T1D from T2D and controls in Indians. We compared Indians with Europeans from the Wellcome Trust Case Control Consortium study; T1D (n = 1963), T2D (n = 1924) and controls (n = 2938). The T1D GRS was discriminative of T1D from T2D in Indians but slightly less than in Europeans (ROC AUC 0.84 v 0.87, p < 0.0001). HLA SNPs contributed the majority of the discriminative power in Indians. A T1D GRS using SNPs defined in Europeans is discriminative of T1D from T2D and controls in Indians. As with Europeans, the T1D GRS may be useful for classifying diabetes in Indians.
Identifiants
pubmed: 32528078
doi: 10.1038/s41598-020-65317-1
pii: 10.1038/s41598-020-65317-1
pmc: PMC7289794
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9450Références
Das, A. Type 1 diabetes in India: Overall insights. Indian. J. Endocrinol. Metab. 19, 31 (2015).
Yajnik, C. S. Obesity epidemic in India: intrauterine origins? Proc. Nutr. Soc. 63, 387–396 (2004).
doi: 10.1079/PNS2004365
Oram, R. A. et al. A type 1 diabetes genetic risk score can aid discrimination between type 1 and type 2 diabetes in young adults. Diabetes Care 39, 337–344 (2016).
doi: 10.2337/dc15-1111
Winkler, C. et al. Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes. Diabetologia 57, 2521–2529 (2014).
doi: 10.1007/s00125-014-3362-1
Sharp, S. A. et al. Development and Standardization of an Improved Type 1 Diabetes Genetic Risk Score for Use in Newborn Screening and Incident Diagnosis. Diabetes Care 1–8, https://doi.org/10.2337/dc18-1785/-/DC1 (2019).
Perry, D. J. et al. Application of a Genetic Risk Score to Racially Diverse Type 1 Diabetes Populations Demonstrates the Need for Diversity in Risk-Modeling. Sci. Rep. 8, 1–13 (2018).
doi: 10.1038/s41598-018-22574-5
WTCCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–78 (2007).
doi: 10.1038/nature05911
Jones, A. G. & Hattersley, A. T. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet. Med. 30, 803–817 (2013).
doi: 10.1111/dme.12159
Yajnik, C. S. et al. FTO Gene Variants are Strongly Associated with Type 2 Diabetes but only weakly with Obesity in South Asian Indians. Diabetologia 52, 247–252 (2009).
doi: 10.1007/s00125-008-1186-6
Deshpande, V., Bhave, S., Kellingray, S. D. & Joglekar, C. Insulin Resistance Syndrome in 8-Year-Old Indian Children Small at Birth, Big at 8 Years, or Both? Diabetes 48, 1–8 (1999).
doi: 10.2337/diabetes.48.1.1
Oram, R. A. et al. The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells. Diabetologia 57, 187–191 (2014).
doi: 10.1007/s00125-013-3067-x
Barker, J. M. et al. Two single nucleotide polymorphisms identify the highest-risk diabetes HLA genotype; Potential for rapid screening. Diabetes 57, 3152–3155 (2008).
doi: 10.2337/db08-0605
Winkler, C. et al. A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes. Genes Immun. 13, 549–555 (2012).
doi: 10.1038/gene.2012.36
Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4, 1–16 (2015).
doi: 10.1186/s13742-015-0047-8
Purcell, S. et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
doi: 10.1086/519795
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
Rogers, M. A. M., Kim, C., Banerjee, T. & Lee, J. M. Fluctuations in the incidence of type 1 diabetes in the United States from 2001 to 2015: a longitudinal study. 1–9, https://doi.org/10.1186/s12916-017-0958-6 (2017).
Thomas, N. J. et al. Frequency and phenotype of type 1 diabetes in the first six decades of life: A cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabetes Endocrinol. 6, 122–129 (2017).
doi: 10.1016/S2213-8587(17)30362-5
Khera, A. V et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, (2018).
Cerolsaletti, K., Hao, W. & Greenbaum, C. J. Genetics Coming of Age in Type 1 Diabetes. Diabetes Care 42, 189–191 (2019).
doi: 10.2337/dci18-0039
Rich, S. S. et al. Overview of the Type i Diabetes Genetics Consortium. Genes Immun. 10, 1–6 (2009).
doi: 10.1038/gene.2009.84
Consortium, T. W. T. C. C. et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661 (2007).
doi: 10.1038/nature05911
Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).
doi: 10.1038/s41576-018-0018-x
Curtis, D. Polygenic risk score for schizophrenia is more strongly associated with ancestry than with schizophrenia. Psychiatr. Genet. 28, 85–89 (2018).
doi: 10.1097/YPG.0000000000000206
Odugbesan, O. et al. Autoantibodies in Indian-Asians with insulin-dependent diabetes in the UK. Postgrad. Med. J. 64, 357–360 (1988).
doi: 10.1136/pgmj.64.751.357
Sanjeevi, C. B., Kanungo, A., Shtauvere, A., Samal, K. C. & Tripathi, B. B. Association of HLA class II alleles with different subgroups of diabetes mellitus in Eastern India identify different associations with IDDM and malnutrition-related diabetes. Tissue Antigens 54, 83–87 (1999).
doi: 10.1034/j.1399-0039.1999.540109.x
Mijovic, C. H., Barnett, A. H. & Todd, J. A. 7 Trans-racial gene mapping studies. Baillieres. Clin. Endocrinol. Metab. 5, 321–340 (1991).
doi: 10.1016/S0950-351X(05)80130-2