Pten deletion in Dmp1-expressing cells does not rescue the osteopenic effects of Wnt/β-catenin suppression.
Animals
Bone Diseases, Metabolic
/ drug therapy
Cell Proliferation
/ genetics
Disease Models, Animal
Extracellular Matrix Proteins
/ genetics
Humans
Mice
Neoplasms
/ drug therapy
Osteoblasts
/ drug effects
Osteogenesis
/ drug effects
PTEN Phosphohydrolase
/ genetics
Phosphatidylinositol 3-Kinases
/ genetics
Proto-Oncogene Proteins c-akt
/ genetics
Wnt Signaling Pathway
/ drug effects
beta Catenin
/ genetics
Akt
Pten
Wnt
osteoporosis
β-catenin
Journal
Journal of cellular physiology
ISSN: 1097-4652
Titre abrégé: J Cell Physiol
Pays: United States
ID NLM: 0050222
Informations de publication
Date de publication:
12 2020
12 2020
Historique:
received:
19
11
2019
revised:
01
05
2020
accepted:
02
05
2020
pubmed:
13
6
2020
medline:
7
4
2021
entrez:
13
6
2020
Statut:
ppublish
Résumé
Skeletal homeostasis is sensitive to perturbations in Wnt signaling. Beyond its role in the bone, Wnt is a major target for pharmaceutical inhibition in a wide range of diseases, most notably cancers. Numerous clinical trials for Wnt-based candidates are currently underway, and Wnt inhibitors will likely soon be approved for clinical use. Given the bone-suppressive effects accompanying Wnt inhibition, there is a need to expose alternate pathways/molecules that can be targeted to counter the deleterious effects of Wnt inhibition on bone properties. Activation of the Pi3k/Akt pathway via Pten deletion is one possible osteoanabolic pathway to exploit. We investigated whether the osteopenic effects of β-catenin deletion from bone cells could be rescued by Pten deletion in the same cells. Mice carrying floxed alleles for Pten and β-catenin were bred to Dmp1-Cre mice to delete Pten alone, β-catenin alone, or both genes from the late-stage osteoblast/osteocyte population. The mice were assessed for bone mass, density, strength, and formation parameters to evaluate the potential rescue effect of Pten deletion in Wnt-impaired mice. Pten deletion resulted in high bone mass and β-catenin deletion resulted in low bone mass. Compound mutants had bone properties similar to β-catenin mutant mice, or surprisingly in some assays, were further compromised beyond β-catenin mutants. Pten inhibition, or one of its downstream nodes, is unlikely to protect against the bone-wasting effects of Wnt/βcat inhibition. Other avenues for preserving bone mass in the presence of Wnt inhibition should be explored to alleviate the skeletal side effects of Wnt inhibitor-based therapies.
Identifiants
pubmed: 32529635
doi: 10.1002/jcp.29792
pmc: PMC7529875
mid: NIHMS1602639
doi:
Substances chimiques
CTNNB1 protein, mouse
0
Dmp1 protein, mouse
0
Extracellular Matrix Proteins
0
beta Catenin
0
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
PTEN Phosphohydrolase
EC 3.1.3.67
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
9785-9794Subventions
Organisme : BLRD VA
ID : I01 BX001478
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR069029
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR053237
Pays : United States
Organisme : NIAMS NIH HHS
ID : T32 AR065971
Pays : United States
Organisme : NIAMS NIH HHS
ID : F31 AR070624
Pays : United States
Organisme : BLRD VA
ID : IK6 BX003783
Pays : United States
Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Bone. 1993 Jul-Aug;14(4):595-608
pubmed: 8274302
Adv Biol Regul. 2019 May;72:51-62
pubmed: 31010692
Bone. 2011 Nov;49(5):1010-9
pubmed: 21855668
Cell. 2001 Nov 16;107(4):513-23
pubmed: 11719191
Science. 2013 Jul 26;341(6144):399-402
pubmed: 23744781
Cell Death Differ. 2013 Dec;20(12):1631-43
pubmed: 23811847
PLoS One. 2013 May 13;8(5):e63857
pubmed: 23675511
J Bone Miner Res. 2013 Jan;28(1):2-17
pubmed: 23197339
Am J Hum Genet. 2003 Mar;72(3):763-71
pubmed: 12579474
J Cell Sci. 2014 Jul 1;127(Pt 13):2967-82
pubmed: 24816560
Cancer Res. 2005 Dec 15;65(24):11276-81
pubmed: 16357132
PLoS One. 2012;7(9):e43291
pubmed: 23028449
Bone Res. 2018 May 25;6:17
pubmed: 29844946
Curr Oncol Rep. 2019 Feb 4;21(2):12
pubmed: 30715618
Bone. 2006 Sep;39(3):470-6
pubmed: 16679074
Mol Endocrinol. 2004 Oct;18(10):2409-23
pubmed: 15205473
Dev Cell. 2005 May;8(5):751-64
pubmed: 15866165
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1649-1654
pubmed: 28143939
Am J Hum Genet. 2002 Jan;70(1):11-9
pubmed: 11741193
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2259-64
pubmed: 17287359
Genesis. 2002 Feb;32(2):148-9
pubmed: 11857804
J Dent Res. 2007 Apr;86(4):320-5
pubmed: 17384025
Bone. 2016 Jul;88:138-145
pubmed: 27143110
Curr Osteoporos Rep. 2017 Jun;15(3):153-161
pubmed: 28432596
J Biomech. 2015 Jan 21;48(2):310-7
pubmed: 25498366
Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):E2197-204
pubmed: 22745162
Gynecol Oncol. 2019 Aug;154(2):294-301
pubmed: 31174889
Cancer Cell. 2003 Feb;3(2):117-30
pubmed: 12620407
Onco Targets Ther. 2017 Sep 11;10:4413-4422
pubmed: 28979133
Mol Cell Biol. 2010 Jun;30(12):3071-85
pubmed: 20404086
Endocrinology. 2016 Aug;157(8):3047-57
pubmed: 27253995
J Bone Miner Res. 2014 Mar;29(3):705-15
pubmed: 23929793
Mol Cell. 2013 Aug 22;51(4):409-22
pubmed: 23973372
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20224-9
pubmed: 24277854
Development. 2001 Apr;128(8):1253-64
pubmed: 11262227
J Bone Miner Res. 2010 Sep;25(9):1897-904
pubmed: 20564241
J Cell Sci. 2001 Jul;114(Pt 13):2375-82
pubmed: 11559746
Trends Endocrinol Metab. 2017 Aug;28(8):597-611
pubmed: 28602209
Kidney Int. 2016 May;89(5):1062-1074
pubmed: 27083283