Genomic and transcriptomic analyses in Drosophila suggest that the ecdysteroid kinase-like (EcKL) gene family encodes the 'detoxification-by-phosphorylation' enzymes of insects.
Animals
Cytochrome P-450 Enzyme System
/ genetics
Drosophila
/ genetics
Drosophila Proteins
/ genetics
Drosophila melanogaster
/ genetics
Ecdysteroids
/ genetics
Gene Expression Profiling
Genes, Insect
Genome, Insect
Genomics
Insecta
Phosphorylation
/ genetics
Phosphotransferases
/ genetics
Phylogeny
Transcriptome
CHKov1
Cytochrome P450
DUF227
Ecdysone
JhI-26
PheWAS
Journal
Insect biochemistry and molecular biology
ISSN: 1879-0240
Titre abrégé: Insect Biochem Mol Biol
Pays: England
ID NLM: 9207282
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
16
02
2020
revised:
25
05
2020
accepted:
31
05
2020
pubmed:
17
6
2020
medline:
30
12
2020
entrez:
17
6
2020
Statut:
ppublish
Résumé
Phosphorylation is a phase II detoxification reaction that, among animals, occurs near exclusively in insects, but the enzymes responsible have never been cloned or otherwise identified. We propose the hypothesis that members of the arthropod-specific ecdysteroid kinase-like (EcKL) gene family encode detoxicative kinases. To test this hypothesis, we annotated the EcKL gene family in 12 species of Drosophila and explored their evolution within the genus. Many ancestral EcKL clades are evolutionarily unstable and have experienced repeated gene gain and loss events, while others are conserved as single-copy orthologs. Leveraging multiple published gene expression datasets from D. melanogaster, and using the cytochrome P450s-a classical detoxification family-as a test case, we demonstrate relationships between xenobiotic induction, detoxification tissue-enriched expression and evolutionary instability in the EcKLs and the P450s. We devised a systematic method for identifying candidate detoxification genes in large gene families that is concordant with experimentally determined functions of P450 genes in D. melanogaster. Applying this method to the EcKLs suggested a significant proportion of these genes play roles in detoxification, and that the EcKLs may constitute a detoxification gene family in insects. Additionally, we estimate that between 11 and 16 uncharacterised D. melanogaster P450s are strong detoxification candidates. Lastly, we also found previously unreported genomic and transcriptomic variation in a number of EcKLs and P450s associated with toxic stress phenotypes using a targeted phenome-wide association study (PheWAS) approach in D. melanogaster, presenting multiple future avenues of research for detoxification genetics in this species.
Identifiants
pubmed: 32540344
pii: S0965-1748(20)30118-1
doi: 10.1016/j.ibmb.2020.103429
pii:
doi:
Substances chimiques
Drosophila Proteins
0
Ecdysteroids
0
Cytochrome P-450 Enzyme System
9035-51-2
Phosphotransferases
EC 2.7.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
103429Informations de copyright
Copyright © 2020 Elsevier Ltd. All rights reserved.