Prostate carcinogenesis: inflammatory storms.
Carcinogenesis
/ genetics
Cell Transformation, Neoplastic
/ genetics
Chronic Disease
DNA Breaks, Double-Stranded
DNA Damage
/ genetics
DNA Repair
/ genetics
Diet
/ adverse effects
Dietary Fats
/ adverse effects
Humans
Inflammation
/ etiology
Male
Microbiota
/ immunology
Obesity
/ complications
Paracrine Communication
/ immunology
Prostate
/ immunology
Prostatic Neoplasms
/ etiology
Receptors, Androgen
/ genetics
Tumor Microenvironment
/ genetics
Journal
Nature reviews. Cancer
ISSN: 1474-1768
Titre abrégé: Nat Rev Cancer
Pays: England
ID NLM: 101124168
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
accepted:
24
04
2020
pubmed:
18
6
2020
medline:
11
11
2020
entrez:
18
6
2020
Statut:
ppublish
Résumé
Prostate cancer is a major cause of cancer morbidity and mortality. Intra-prostatic inflammation is a risk factor for prostate carcinogenesis, with diet, chemical injury and an altered microbiome being causally implicated. Intra-prostatic inflammatory cell recruitment and expansion can ultimately promote DNA double-strand breaks and androgen receptor activation in prostate epithelial cells. The activation of the senescence-associated secretory phenotype fuels further 'inflammatory storms', with free radicals leading to further DNA damage. This drives the overexpression of DNA repair and tumour suppressor genes, rendering these genes susceptible to mutagenic insults, with carcinogenesis accelerated by germline DNA repair gene defects. We provide updates on recent advances in elucidating prostate carcinogenesis and explore novel therapeutic and prevention strategies harnessing these discoveries.
Identifiants
pubmed: 32546840
doi: 10.1038/s41568-020-0267-9
pii: 10.1038/s41568-020-0267-9
doi:
Substances chimiques
Dietary Fats
0
Receptors, Androgen
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
455-469Subventions
Organisme : Medical Research Council
ID : MC_U120085810
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : R01 CA245294
Pays : United States
Organisme : Cancer Research UK
Pays : United Kingdom
Organisme : Department of Health
Pays : United Kingdom
Références
Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).
pubmed: 25220842
doi: 10.1002/ijc.29210
Bandini, M. et al. Improved cancer-specific free survival and overall free survival in contemporary metastatic prostate cancer patients: a population-based study. Int. Urol. Nephrol. 50, 71–78 (2018).
pubmed: 29129028
doi: 10.1007/s11255-017-1744-2
Sfanos, K. S., Yegnasubramanian, S., Nelson, W. G. & De Marzo, A. M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 15, 11–24 (2018).
pubmed: 29089606
doi: 10.1038/nrurol.2017.167
Sfanos, K. S. et al. Bacterial prostatitis enhances 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced cancer at multiple sites. Cancer Prev. Res. 8, 683–692 (2015).
doi: 10.1158/1940-6207.CAPR-15-0090
Shinohara, D. B. et al. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate 73, 1007–1015 (2013).
pubmed: 23389852
pmcid: 3991131
doi: 10.1002/pros.22648
Dickerman, B. A. et al. Body fat distribution on computed tomography imaging and prostate cancer risk and mortality in the AGES–Reykjavik study. Cancer 125, 2877–2885 (2019).
pubmed: 31179538
Le Marchand, L., Kolonel, L. N., Wilkens, L. R., Myers, B. C. & Hirohata, T. Animal fat consumption and prostate cancer: a prospective study in Hawaii. Epidemiology 5, 276–282 (1994).
pubmed: 8038241
doi: 10.1097/00001648-199405000-00004
Nakai, Y., Nelson, W. G. & De Marzo, A. M. The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res. 67, 1378–1384 (2007).
pubmed: 17264317
doi: 10.1158/0008-5472.CAN-06-1336
Simons, B. W. et al. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J. Pathol. 235, 478–489 (2015).
pubmed: 25348195
pmcid: 4352321
doi: 10.1002/path.4472
Kakegawa, T. et al. Frequency of propionibacterium acnes infection in prostate glands with negative biopsy results is an independent risk factor for prostate cancer in patients with increased serum PSA titers. PLoS ONE 12, e0169984 (2017).
pubmed: 28081259
pmcid: 5231393
doi: 10.1371/journal.pone.0169984
De Marzo, A. M., Marchi, V. L., Epstein, J. I. & Nelson, W. G. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am. J. Pathol. 155, 1985–1992 (1999).
pubmed: 10595928
pmcid: 1866955
doi: 10.1016/S0002-9440(10)65517-4
Sfanos, K. S. & De Marzo, A. M. Prostate cancer and inflammation: the evidence. Histopathology 60, 199–215 (2012).
pubmed: 22212087
pmcid: 4029103
doi: 10.1111/j.1365-2559.2011.04033.x
Gurel, B. et al. Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol. Biomarkers Prev. 23, 847–856 (2014).
pubmed: 24748218
pmcid: 4012292
doi: 10.1158/1055-9965.EPI-13-1126
Mani, R. S. et al. Inflammation-induced oxidative stress mediates gene fusion formation in prostate cancer. Cell Rep. 17, 2620–2631 (2016).
pubmed: 27926866
pmcid: 5147555
doi: 10.1016/j.celrep.2016.11.019
Kwon, O. J., Zhang, L., Ittmann, M. M. & Xin, L. Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proc. Natl Acad. Sci. USA 111, E592–E600 (2014).
pubmed: 24367088
Calcinotto, A. et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature 559, 363–369 (2018). This study is the first to demonstrate the IL-23-mediated paracrine effect of tumour-infiltrating MDSCs in driving castration-insensitive prostate cancer growth.
pubmed: 29950727
pmcid: 6461206
doi: 10.1038/s41586-018-0266-0
Smelov, V. et al. Detection of DNA viruses in prostate cancer. Sci. Rep. 6, 25235 (2016).
pubmed: 27121729
pmcid: 4848500
doi: 10.1038/srep25235
Kirby, R. S., Lowe, D., Bultitude, M. I. & Shuttleworth, K. E. Intra-prostatic urinary reflux: an aetiological factor in abacterial prostatitis. Br. J. Urol. 54, 729–731 (1982).
pubmed: 7150931
doi: 10.1111/j.1464-410X.1982.tb13635.x
Lavalette, C. et al. Abdominal obesity and prostate cancer risk: epidemiological evidence from the EPICAP study. Oncotarget 9, 34485–34494 (2018).
pubmed: 30349643
pmcid: 6195387
doi: 10.18632/oncotarget.26128
DuPre, N. C. et al. Corpora amylacea in prostatectomy tissue and associations with molecular, histological, and lifestyle factors. Prostate 78, 1172–1180 (2018).
pubmed: 30009541
pmcid: 6501556
doi: 10.1002/pros.23692
Liu, X. et al. Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. Cell Rep. 17, 2596–2606 (2016).
pubmed: 27926864
pmcid: 5367888
doi: 10.1016/j.celrep.2016.11.010
van Leenders, G. J. et al. Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am. J. Pathol. 162, 1529–1537 (2003).
pubmed: 12707036
pmcid: 1851184
doi: 10.1016/S0002-9440(10)64286-1
Garcia, A. J. et al. Pten null prostate epithelium promotes localized myeloid-derived suppressor cell expansion and immune suppression during tumor initiation and progression. Mol. Cell Biol. 34, 2017–2028 (2014). This study shows that the loss of Pten in prostatic epithelium is associated with the upregulation of pro-inflammatory cytokines that induce the intra-prostatic expansion of immunosuppressive MDSCs.
pubmed: 24662052
pmcid: 4019050
doi: 10.1128/MCB.00090-14
Escamilla, J. et al. CSF1 receptor targeting in prostate cancer reverses macrophage-mediated resistance to androgen blockade therapy. Cancer Res. 75, 950–962 (2015).
pubmed: 25736687
pmcid: 4359956
doi: 10.1158/0008-5472.CAN-14-0992
Ammirante, M., Luo, J. L., Grivennikov, S., Nedospasov, S. & Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010). This study shows that B cells can infiltrate prostate tumours and release cytokines that sustain castration-independent tumour growth.
pubmed: 20220849
pmcid: 2866639
doi: 10.1038/nature08782
Lopez-Bujanda, Z. A. et al. Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression. Preprint at bioRxiv https://dx.doi.org/10.1101/651083 (2019).
Lorente, D. et al. Baseline neutrophil-lymphocyte ratio (NLR) is associated with survival and response to treatment with second-line chemotherapy for advanced prostate cancer independent of baseline steroid use. Ann. Oncol. 26, 750–755 (2015).
pubmed: 25538172
doi: 10.1093/annonc/mdu587
Leibowitz-Amit, R. et al. Clinical variables associated with PSA response to abiraterone acetate in patients with metastatic castration-resistant prostate cancer. Ann. Oncol. 25, 657–662 (2014).
pubmed: 24458472
pmcid: 4433513
doi: 10.1093/annonc/mdt581
Wiseman, H. & Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313, 17–29 (1996).
pubmed: 8546679
pmcid: 1216878
doi: 10.1042/bj3130017
Eiserich, J. P. et al. Formation of nitric oxide derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391, 393–397 (1998).
pubmed: 9450756
doi: 10.1038/34923
Xia, Y. & Zweier, J. L. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc. Natl Acad. Sci. USA 94, 6954–6958 (1997).
pubmed: 9192673
doi: 10.1073/pnas.94.13.6954
pmcid: 21266
Zhang, B. et al. The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1. Nat. Commun. 9, 1723 (2018). This study shows that DNA-damaging treatment can induce the SASP by activating the ATM–TRAF6–TAK1 axis.
pubmed: 29712904
pmcid: 5928226
doi: 10.1038/s41467-018-04010-4
Lehmann, B. D. et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 68, 7864–7871 (2008).
pubmed: 18829542
doi: 10.1158/0008-5472.CAN-07-6538
Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).
pubmed: 26563462
pmcid: 4771416
doi: 10.1038/nrc4016
Zhao, X. Y. et al. Two mutations identified in the androgen receptor of the new human prostate cancer cell line MDA PCa 2a. J. Urol. 162, 2192–2199 (1999).
pubmed: 10569618
doi: 10.1016/S0022-5347(05)68158-X
Sharp, A. et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J. Clin. Invest. 129, 192–208 (2019).
pubmed: 30334814
doi: 10.1172/JCI122819
Asangani, I. A. et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014).
pubmed: 24759320
pmcid: 4075966
doi: 10.1038/nature13229
Liss, M. A. et al. Metabolic biosynthesis pathways identified from fecal microbiome associated with prostate cancer. Eur. Urol. 74, 575–582 (2018).
pubmed: 30007819
pmcid: 6716160
doi: 10.1016/j.eururo.2018.06.033
Shrestha, E. et al. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J. Urol. 199, 161–171 (2018). This study supports the hypothesis that the host urinary microbiome may contribute to prostatic inflammation.
pubmed: 28797714
doi: 10.1016/j.juro.2017.08.001
Sfanos, K. S. et al. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis. 21, 539–548 (2018). This study shows significant compositional differences in the gastrointestinal microbiota of men receiving ADT, including an abundance of bacterial species linked to anti-PD-1 response and the enrichment of gene pathways involved in both steroid and steroid hormone biosynthesis.
pubmed: 29988102
pmcid: 6283851
doi: 10.1038/s41391-018-0061-x
Sfanos, K. S. et al. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68, 306–320 (2008). This study highlights regional heterogeneity in and the lack of a generalized prostatic flora.
pubmed: 18163428
doi: 10.1002/pros.20680
Banerjee, S. et al. Microbiome signatures in prostate cancer. Carcinogenesis 40, 749–764 (2019).
pubmed: 30794288
doi: 10.1093/carcin/bgz008
De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 256–269 (2007).
pubmed: 17384581
pmcid: 3552388
doi: 10.1038/nrc2090
Elkahwaji, J. E., Hauke, R. J. & Brawner, C. M. Chronic bacterial inflammation induces prostatic intraepithelial neoplasia in mouse prostate. Br. J. Cancer 101, 1740–1748 (2009).
pubmed: 19844236
pmcid: 2778530
doi: 10.1038/sj.bjc.6605370
Khalili, M. et al. Loss of Nkx3.1 expression in bacterial prostatitis: a potential link between inflammation and neoplasia. Am. J. Pathol. 176, 2259–2268 (2010).
pubmed: 20363913
pmcid: 2861091
doi: 10.2353/ajpath.2010.080747
Bowen, C. & Gelmann, E. P. NKX3.1 activates cellular response to DNA damage. Cancer Res. 70, 3089–3097 (2010).
pubmed: 20395202
doi: 10.1158/0008-5472.CAN-09-3138
Markowski, M. C., Bowen, C. & Gelmann, E. P. Inflammatory cytokines induce phosphorylation and ubiquitination of prostate suppressor protein NKX3.1. Cancer Res. 68, 6896–6901 (2008).
pubmed: 18757402
pmcid: 2586101
doi: 10.1158/0008-5472.CAN-08-0578
Ouyang, X., DeWeese, T. L., Nelson, W. G. & Abate-Shen, C. Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res. 65, 6773–6779 (2005). This study shows that Nkx3.1 provides protection against oxidative damage and that the loss of its function is associated with the formation of prostatic intraepithelial neoplasia, with associated oxidative DNA damage.
pubmed: 16061659
doi: 10.1158/0008-5472.CAN-05-1948
Ashok, A. et al. Consequences of interleukin 1beta-triggered chronic inflammation in the mouse prostate gland: Altered architecture associated with prolonged CD4
pubmed: 30900284
doi: 10.1002/pros.23784
Ridlon, J. M. et al. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J. Lipid Res. 54, 2437–2449 (2013).
pubmed: 23772041
pmcid: 3735941
doi: 10.1194/jlr.M038869
Golombos, D. M. et al. The role of gut microbiome in the pathogenesis of prostate cancer: a prospective, pilot study. Urology 111, 122–128 (2018). This study shows biologically significant differences between the gut microbial compositions of men with prostate cancer and of benign controls.
pubmed: 28888753
doi: 10.1016/j.urology.2017.08.039
Poutahidis, T. et al. Pathogenic intestinal bacteria enhance prostate cancer development via systemic activation of immune cells in mice. PLoS ONE 8, e73933 (2013).
pubmed: 23991210
pmcid: 3753256
doi: 10.1371/journal.pone.0073933
Francis, J. C., Thomsen, M. K., Taketo, M. M. & Swain, A. β-Catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS Genet. 9, e1003180 (2013).
pubmed: 23300485
pmcid: 3536663
doi: 10.1371/journal.pgen.1003180
Giovannucci, E. et al. A prospective study of dietary fat and risk of prostate cancer. J. Natl Cancer Inst. 85, 1571–1579 (1993).
pubmed: 8105097
doi: 10.1093/jnci/85.19.1571
Freedland, S. J. & Aronson, W. J. Examining the relationship between obesity and prostate cancer. Rev. Urol. 6, 73–81 (2004).
pubmed: 16985580
pmcid: 1550782
Mangiola, S. et al. Androgen deprivation therapy promotes an obesity-like microenvironment in periprostatic fat. Endocr. Connect. 8, 547–558 (2019).
pubmed: 30959474
pmcid: 6499921
doi: 10.1530/EC-19-0029
Xu, C. et al. Fat intake is not linked to prostate cancer: a systematic review and dose-response meta-analysis. PLoS ONE 10, e0131747 (2015).
pubmed: 26186528
pmcid: 4505895
doi: 10.1371/journal.pone.0131747
Van Blarigan, E. L. et al. Fat intake after prostate cancer diagnosis and mortality in the Physicians’ Health Study. Cancer Causes Control. 26, 1117–1126 (2015).
pubmed: 26047644
pmcid: 4499006
doi: 10.1007/s10552-015-0606-4
Strom, S. S. et al. Saturated fat intake predicts biochemical failure after prostatectomy. Int. J. Cancer 122, 2581–2585 (2008).
pubmed: 18324626
doi: 10.1002/ijc.23414
Labbe, D. P. et al. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nat. Commun. 10, 4358 (2019).
pubmed: 31554818
pmcid: 6761092
doi: 10.1038/s41467-019-12298-z
Fradet, Y., Meyer, F., Bairati, I., Shadmani, R. & Moore, L. Dietary fat and prostate cancer progression and survival. Eur. Urol. 35, 388–391 (1999).
pubmed: 10325493
doi: 10.1159/000019913
Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl Med. 1, 6ra14 (2009).
pubmed: 20368178
pmcid: 2894525
doi: 10.1126/scitranslmed.3000322
Cornejo-Pareja, I., Munoz-Garach, A., Clemente-Postigo, M. & Tinahones, F. J. Importance of gut microbiota in obesity. Eur. J. Clin. Nutr. 72, 26–37 (2019).
pubmed: 30487562
doi: 10.1038/s41430-018-0306-8
Joshu, C. E. et al. Weight gain is associated with an increased risk of prostate cancer recurrence after prostatectomy in the PSA era. Cancer Prev. Res. 4, 544–551 (2011).
doi: 10.1158/1940-6207.CAPR-10-0257
Smith, M. R. et al. Changes in body composition during androgen deprivation therapy for prostate cancer. J. Clin. Endocrinol. Metab. 87, 599–603 (2002).
pubmed: 11836291
doi: 10.1210/jcem.87.2.8299
Hamilton, E. J. et al. Increase in visceral and subcutaneous abdominal fat in men with prostate cancer treated with androgen deprivation therapy. Clin. Endocrinol. 74, 377–383 (2011).
doi: 10.1111/j.1365-2265.2010.03942.x
Cho, H. J. et al. A high-fat diet containing lard accelerates prostate cancer progression and reduces survival rate in mice: possible contribution of adipose tissue-derived cytokines. Nutrients 7, 2539–2561 (2015).
pubmed: 25912035
pmcid: 4425160
doi: 10.3390/nu7042539
Huang, M. et al. A high-fat diet enhances proliferation of prostate cancer cells and activates MCP-1/CCR2 signaling. Prostate 72, 1779–1788 (2012).
pubmed: 22514016
doi: 10.1002/pros.22531
Liu, S. et al. Hyperinsulinemia enhances interleukin-17-induced inflammation to promote prostate cancer development in obese mice through inhibiting glycogen synthase kinase 3-mediated phosphorylation and degradation of interleukin-17 receptor. Oncotarget 7, 13651–13666 (2016). This study provides mechanistic evidence of how obesity, insulin and insulin-like growth factor 1 signalling crosstalk with the IL-17 pathway to contribute to IL-17-mediated signalling that is increased in proliferative prostate cancer cells.
pubmed: 26871944
pmcid: 4924668
doi: 10.18632/oncotarget.7296
Hayashi, T. et al. High-fat diet-induced inflammation accelerates prostate cancer growth via IL6 signaling. Clin. Cancer Res. 24, 4309–4318 (2018).
pubmed: 29776955
doi: 10.1158/1078-0432.CCR-18-0106
Chen, M. et al. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat. Genet. 50, 206–218 (2018). This study provides preclinical evidence showing that key oncogenic aberrations in prostate cancer and the effects of a high-fat diet converge on a master regulator of lipid biosynthesis to promote prostate cancer growth and metastasis. It provides a mechanistic link supporting the notion that Western high-fat diets can promote prostate cancer progression.
pubmed: 29335545
pmcid: 6714980
doi: 10.1038/s41588-017-0027-2
Kobayashi, N. et al. Effect of low-fat diet on development of prostate cancer and Akt phosphorylation in the Hi-Myc transgenic mouse model. Cancer Res. 68, 3066–3073 (2008).
pubmed: 18413778
pmcid: 2902987
doi: 10.1158/0008-5472.CAN-07-5616
Zhang, Q. et al. Targeting Th17–IL-17 pathway in prevention of micro-invasive prostate cancer in a mouse model. Prostate 77, 888–899 (2017).
pubmed: 28240383
pmcid: 5400716
doi: 10.1002/pros.23343
Zhang, Q. et al. Interleukin-17 promotes formation and growth of prostate adenocarcinoma in mouse models. Cancer Res. 72, 2589–2599 (2012).
pubmed: 22461511
pmcid: 3665158
doi: 10.1158/0008-5472.CAN-11-3795
Laurent, V. et al. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat. Commun. 7, 10230 (2016). This study shows that peri-prostatic adipose tissue can produce chemokines that promote prostate cancer cell migration. Importantly, chemokine-receptor-induced chemotaxis is enhanced by obesity.
pubmed: 26756352
pmcid: 4729927
doi: 10.1038/ncomms10230
Koh, C. M. et al. MYC and prostate cancer. Genes Cancer 1, 617–628 (2010).
pubmed: 21779461
pmcid: 3092219
doi: 10.1177/1947601910379132
Narlik-Grassow, M. et al. Conditional transgenic expression of PIM1 kinase in prostate induces inflammation-dependent neoplasia. PLoS ONE 8, e60277 (2013).
pubmed: 23565217
pmcid: 3614961
doi: 10.1371/journal.pone.0060277
Jiménez-García, M. P. et al. The role of PIM1/PIM2 kinases in tumors of the male reproductive system. Sci. Rep. 6, 38079 (2016).
pubmed: 27901106
pmcid: 5128923
doi: 10.1038/srep38079
Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).
pubmed: 16079851
pmcid: 1939938
doi: 10.1038/nature03918
Ewald, J. A. et al. Androgen deprivation induces senescence characteristics in prostate cancer cells in vitro and in vivo. Prostate 73, 337–345 (2013).
pubmed: 22911222
doi: 10.1002/pros.22571
Pernicová, Z. et al. Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia 13, 526–536 (2011).
pubmed: 21677876
pmcid: 3114246
doi: 10.1593/neo.11182
Alimonti, A. et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J. Clin. Invest. 120, 681–693 (2010). Pten inactivation can occur in the absence of DNA damage and cellular hyperproliferation.
pubmed: 20197621
pmcid: 2827955
doi: 10.1172/JCI40535
Toso, A. et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9, 75–89 (2014).
pubmed: 25263564
doi: 10.1016/j.celrep.2014.08.044
Revandkar, A. et al. Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence. Nat. Commun. 7, 13719 (2016).
pubmed: 27941799
pmcid: 5159884
doi: 10.1038/ncomms13719
Barreto-Andrade, J. C. et al. Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiation. Mol. Cancer Therapeutics 10, 1185–1193 (2011).
doi: 10.1158/1535-7163.MCT-11-0061
Kawata, H. et al. Stimulation of cellular senescent processes, including secretory phenotypes and anti-oxidant responses, after androgen deprivation therapy in human prostate cancer. J. steroid Biochem. Mol. Biol. 165, 219–227 (2017).
pubmed: 27329245
doi: 10.1016/j.jsbmb.2016.06.007
Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42, 668–675 (2010). This study shows that androgen receptor signalling triggers DNA DSBs in order to generate characteristic gene re-arrangements in prostate cancer.
pubmed: 20601956
pmcid: 3157086
doi: 10.1038/ng.613
Lin, C. et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139, 1069–1083 (2009).
pubmed: 19962179
pmcid: 2812435
doi: 10.1016/j.cell.2009.11.030
Ju, B. G. et al. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006).
pubmed: 16794079
doi: 10.1126/science.1127196
Mani, R. S. et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326, 1230 (2009).
pubmed: 19933109
pmcid: 2935583
doi: 10.1126/science.1178124
Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).
pubmed: 16254181
doi: 10.1126/science.1117679
Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).
pubmed: 23622249
pmcid: 3690918
doi: 10.1016/j.cell.2013.03.021
Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 162, 454 (2015).
pubmed: 28843286
doi: 10.1016/j.cell.2015.06.053
Beer, T. M. et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J. Clin. Oncol. 35, 40–47 (2017).
pubmed: 28034081
doi: 10.1200/JCO.2016.69.1584
Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase III trial. Lancet. Oncol. 15, 700–712 (2014). Together with reference 93, this study shows that anti-CTLA4 antibody monotherapy did not improve overall survival in patients with metastatic castration-resistant prostate cancer when compared with placebo.
pubmed: 24831977
pmcid: 4418935
doi: 10.1016/S1470-2045(14)70189-5
Antonarakis, E. S. et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J. Clin. Oncol. 38, 395–405 (2020). This trial shows that anti-PD-1 monotherapy had very modest activity in patients with metastatic castration-resistant prostate cancer, although the association of DNA repair defects and antitumour activity is of interest.
pubmed: 31774688
doi: 10.1200/JCO.19.01638
Hossain, D. M. et al. TLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients. Clin. Cancer Res. 21, 3771–3782 (2015).
pubmed: 25967142
pmcid: 4537814
doi: 10.1158/1078-0432.CCR-14-3145
Comito, G. et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33, 2423–2431 (2014).
pubmed: 23728338
doi: 10.1038/onc.2013.191
Di Mitri, D. et al. Re-education of tumor-associated macrophages by CXCR2 blockade drives senescence and tumor inhibition in advanced prostate cancer. Cell Rep. 28, 2156–2168 e2155 (2019). This study demonstrates how tumour-associated macrophages can be pharmacologically reprogrammed to have tumour-inhibitory functions.
pubmed: 31433989
pmcid: 6715643
doi: 10.1016/j.celrep.2019.07.068
Chi, N., Tan, Z., Ma, K., Bao, L. & Yun, Z. Increased circulating myeloid-derived suppressor cells correlate with cancer stages, interleukin-8 and -6 in prostate cancer. Int. J. Clin. Exp. Med. 7, 3181–3192 (2014).
pubmed: 25419348
pmcid: 4238489
Idorn, M., Kollgaard, T., Kongsted, P., Sengelov, L. & Thor Straten, P. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol. Immunother. 63, 1177–1187 (2014).
pubmed: 25085000
doi: 10.1007/s00262-014-1591-2
Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).
pubmed: 27381735
pmcid: 4935811
doi: 10.1038/ncomms12150
Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37, 208-220.
Di Mitri, D. et al. Tumour-infiltrating Gr-1
pubmed: 25156255
doi: 10.1038/nature13638
Feng, S. et al. Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers. Proc. Natl Acad. Sci. USA 115, 10094–10099 (2018).
pubmed: 30232256
doi: 10.1073/pnas.1800695115
pmcid: 6176562
Nguyen, D. P., Li, J. & Tewari, A. K. Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int. 113, 986–992 (2014).
pubmed: 24053309
doi: 10.1111/bju.12452
Araki, S. et al. Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 67, 6854–6862 (2007).
pubmed: 17638896
doi: 10.1158/0008-5472.CAN-07-1162
Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).
pubmed: 12401408
doi: 10.1016/S1471-4906(02)02302-5
Vykhovanets, E. V., Maclennan, G. T., Vykhovanets, O. V. & Gupta, S. IL-17 expression by macrophages is associated with proliferative inflammatory atrophy lesions in prostate cancer patients. Int. J. Clin. Exp. Pathol. 4, 552–565 (2011).
pubmed: 21904631
pmcid: 3160607
Nonomura, N. et al. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int. 107, 1918–1922 (2011).
pubmed: 21044246
doi: 10.1111/j.1464-410X.2010.09804.x
Galvan, G. C. et al. Effects of obesity on the regulation of macrophage population in the prostate tumor microenvironment. Nutr. Cancer 69, 996–1002 (2017).
pubmed: 28945110
doi: 10.1080/01635581.2017.1359320
Maxwell, P. J. et al. Potentiation of inflammatory CXCL8 signalling sustains cell survival in PTEN-deficient prostate carcinoma. Eur. Urol. 64, 177–188 (2013).
pubmed: 22939387
doi: 10.1016/j.eururo.2012.08.032
Maxwell, P. J., Neisen, J., Messenger, J. & Waugh, D. J. Tumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells. Oncotarget 5, 4895–4908 (2014). Paracrine functional cooperation between prostate tumour cells and their stroma promotes tumour proliferation and invasion.
pubmed: 24970800
pmcid: 4148108
doi: 10.18632/oncotarget.2052
Armstrong, C. W. et al. PTEN deficiency promotes macrophage infiltration and hypersensitivity of prostate cancer to IAP antagonist/radiation combination therapy. Oncotarget 7, 7885–7898 (2016).
pubmed: 26799286
pmcid: 4884961
doi: 10.18632/oncotarget.6955
Majumder, P. K. & Sellers, W. R. Akt-regulated pathways in prostate cancer. Oncogene 24, 7465–7474 (2005).
pubmed: 16288293
doi: 10.1038/sj.onc.1209096
Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).
pubmed: 22722839
pmcid: 3396711
doi: 10.1038/nature11125
Linch, M. et al. Intratumoural evolutionary landscape of high-risk prostate cancer: the PROGENY study of genomic and immune parameters. Ann. Oncol. 28, 2472–2480 (2017).
pubmed: 28961847
pmcid: 5815564
doi: 10.1093/annonc/mdx355
Wang, G., Wang, J. & Sadar, M. D. Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer. Cancer Res. 68, 9918–9927 (2008).
pubmed: 19047173
pmcid: 2654418
doi: 10.1158/0008-5472.CAN-08-1718
Wu, L. et al. ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res. 73, 6068–6079 (2013).
pubmed: 23913826
pmcid: 3790861
doi: 10.1158/0008-5472.CAN-13-0882
Spranger, S. & Gajewski, T. F. A new paradigm for tumor immune escape: β-catenin-driven immune exclusion. J. Immunother. Cancer 3, 43 (2015).
pubmed: 26380088
pmcid: 4570721
doi: 10.1186/s40425-015-0089-6
Stakheev, D. et al. The WNT/β-catenin signaling inhibitor XAV939 enhances the elimination of LNCaP and PC-3 prostate cancer cells by prostate cancer patient lymphocytes in vitro. Sci. Rep. 9, 4761 (2019).
pubmed: 30886380
pmcid: 6423115
doi: 10.1038/s41598-019-41182-5
Tian, X.-H. et al. XAV939, a tankyrase 1 inhibitior, promotes cell apoptosis in neuroblastoma cell lines by inhibiting Wnt/β-catenin signaling pathway. J. Exp. Clin. Cancer Res. 32, 100 (2013).
pubmed: 24308762
pmcid: 3866601
doi: 10.1186/1756-9966-32-100
Melis, M. H. M. et al. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model. Oncotarget 8, 93867–93877 (2017). This study demonstrates the tumour-promoting effect of the adaptive immune response in MYC-driven prostate cancers.
pubmed: 29212195
pmcid: 5706841
doi: 10.18632/oncotarget.21305
Vo, B. T. et al. TGF-β effects on prostate cancer cell migration and invasion are mediated by PGE2 through activation of PI3K/AKT/mTOR pathway. Endocrinology 154, 1768–1779 (2013).
pubmed: 23515290
pmcid: 3628025
doi: 10.1210/en.2012-2074
Wang, J. et al. B-Raf activation cooperates with PTEN loss to drive c-Myc expression in advanced prostate cancer. Cancer Res. 72, 4765–4776 (2012).
pubmed: 22836754
pmcid: 3445712
doi: 10.1158/0008-5472.CAN-12-0820
Castro, E. et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur. Urol. 68, 186–193 (2015).
pubmed: 25454609
doi: 10.1016/j.eururo.2014.10.022
Gurel, B. et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod. Pathol. 21, 1156–1167 (2008).
pubmed: 18567993
pmcid: 3170853
doi: 10.1038/modpathol.2008.111
Kote-Jarai, Z. et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br. J. Cancer 105, 1230–1234 (2011).
pubmed: 21952622
pmcid: 3208504
doi: 10.1038/bjc.2011.383
Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J. Natl Cancer Inst. 91, 1310–1316 (1999).
doi: 10.1093/jnci/91.15.1310
Leongamornlert, D. et al. Germline BRCA1 mutations increase prostate cancer risk. Br. J. Cancer 106, 1697–1701 (2012).
pubmed: 22516946
pmcid: 3349179
doi: 10.1038/bjc.2012.146
Porter, C. M., Shrestha, E., Peiffer, L. B. & Sfanos, K. S. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis. 21, 345–354 (2018).
pubmed: 29795140
doi: 10.1038/s41391-018-0041-1
Lopez-Garcia, M., Romero-Gonzalez, R. & Garrido Frenich, A. Determination of steroid hormones and their metabolite in several types of meat samples by ultra high performance liquid chromatography — orbitrap high resolution mass spectrometry. J. Chromatography. A 1540, 21–30 (2018).
doi: 10.1016/j.chroma.2018.01.052
Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).
pubmed: 28321130
pmcid: 5374023
doi: 10.1038/nature21676
Lin, H.-K. et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374 (2010).
pubmed: 20237562
pmcid: 2928066
doi: 10.1038/nature08815
Schwarze, S. R., Fu, V. X., Desotelle, J. A., Kenowski, M. L. & Jarrard, D. F. The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. Neoplasia 7, 816–823 (2005).
pubmed: 16229804
pmcid: 1501939
doi: 10.1593/neo.05250
Blute, M. L. Jr. et al. Persistence of senescent prostate cancer cells following prolonged neoadjuvant androgen deprivation therapy. PLoS ONE 12, e0172048 (2017).
pubmed: 28234906
pmcid: 5325224
doi: 10.1371/journal.pone.0172048
Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).
pubmed: 26711051
pmcid: 4854923
doi: 10.1111/acel.12445
Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).
pubmed: 20818862
doi: 10.1056/NEJMoa1001294
Rodrigues, D. N. et al. Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. J. Clin. Invest. 128, 5185 (2018). This study shows that a subset of lethal prostate cancers is underpinned by mismatch repair defects. This is associated with high tumour mutational burden, increased immune cell infiltration, increased expression of T cell-related transcripts, and upregulation of specific immunosuppressive mechanisms.
pubmed: 30382943
pmcid: 6205373
doi: 10.1172/JCI125184
Haffner, M. C. et al. Comprehensive evaluation of programmed death-ligand 1 expression in primary and metastatic prostate cancer. Am. J. Pathol. 188, 1478–1485 (2018).
pubmed: 29577933
pmcid: 5971230
doi: 10.1016/j.ajpath.2018.02.014
Boudadi, K. et al. Ipilimumab plus nivolumab and DNA-repair defects in AR-V7-expressing metastatic prostate cancer. Oncotarget 9, 28561–28571 (2018).
pubmed: 29983880
pmcid: 6033362
doi: 10.18632/oncotarget.25564
Cabel, L. et al. Long-term complete remission with Ipilimumab in metastatic castrate-resistant prostate cancer: case report of two patients. J. Immunother. Cancer 5, 31 (2017).
pubmed: 28428880
pmcid: 5394619
doi: 10.1186/s40425-017-0232-7
Hansen, A. R. et al. Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study. Ann. Oncol. 29, 1807–1813 (2018).
pubmed: 29992241
doi: 10.1093/annonc/mdy232
Strickland, K. C. et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7, 13587–13598 (2016).
pubmed: 26871470
pmcid: 4924663
doi: 10.18632/oncotarget.7277
Higuchi, T. et al. CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol. Res. 3, 1257–1268 (2015).
pubmed: 26138335
pmcid: 4984269
doi: 10.1158/2326-6066.CIR-15-0044
Cai, X., Chiu, Y. H. & Chen, Z. J. The cGAS–cGAMP–STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014).
pubmed: 24766893
doi: 10.1016/j.molcel.2014.03.040
Karzai, F. et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J. Immunother. Cancer 6, 141 (2018).
pubmed: 30514390
pmcid: 6280368
doi: 10.1186/s40425-018-0463-2
Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).
pubmed: 26603901
pmcid: 5004891
doi: 10.1038/nri3921
Yeo, M. K. et al. Association of PD-L1 expression and PD-L1 gene polymorphism with poor prognosis in lung adenocarcinoma and squamous cell carcinoma. Hum. Pathol. 68, 103–111 (2017).
pubmed: 28851662
doi: 10.1016/j.humpath.2017.08.016
Sun, J. et al. Correlation between B7-H3 expression and rheumatoid arthritis: A new polymorphism haplotype is associated with increased disease risk. Clin. Immunol. 159, 23–32 (2015).
pubmed: 25931383
doi: 10.1016/j.clim.2015.04.012
Allott, E. H., Masko, E. M. & Freedland, S. J. Obesity and prostate cancer: weighing the evidence. Eur. Urol. 63, 800–809 (2013).
pubmed: 23219374
doi: 10.1016/j.eururo.2012.11.013
Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).
pubmed: 16407889
doi: 10.1038/nature04516
Sfanos, K. S., Wilson, B. A., De Marzo, A. M. & Isaacs, W. B. Acute inflammatory proteins constitute the organic matrix of prostatic corpora amylacea and calculi in men with prostate cancer. Proc. Natl Acad. Sci. USA 106, 3443–3448 (2009).
pubmed: 19202053
doi: 10.1073/pnas.0810473106
pmcid: 2651291
Pritchard, C. C. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375, 443–453 (2016).
pubmed: 27433846
pmcid: 4986616
doi: 10.1056/NEJMoa1603144
Dadaev, T. et al. Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nat. Commun. 9, 2256 (2018).
pubmed: 29892050
pmcid: 5995836
doi: 10.1038/s41467-018-04109-8
Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018).
pubmed: 29892016
pmcid: 6568012
doi: 10.1038/s41588-018-0142-8
Heinlein, C. A. & Chang, C. Androgen receptor in prostate cancer. Endocr. Rev. 25, 276–308 (2004).
pubmed: 15082523
doi: 10.1210/er.2002-0032
Kershaw, E. E. & Flier, J. S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89, 2548–2556 (2004).
pubmed: 15181022
doi: 10.1210/jc.2004-0395
Multigner, L. et al. Chlordecone exposure and risk of prostate cancer. J. Clin. Oncol. 28, 3457–3462 (2010).
pubmed: 20566993
doi: 10.1200/JCO.2009.27.2153
Lebdai, S. et al. Potentiating vascular-targeted photodynamic therapy through CSF-1R modulation of myeloid cells in a preclinical model of prostate cancer. Oncoimmunology 8, e1581528 (2019).
pubmed: 31069149
pmcid: 6492957
doi: 10.1080/2162402X.2019.1581528
Lee, L. et al. Aggressive-variant microsatellite-stable POLE mutant prostate cancer with high mutation burden and durable response to immune checkpoint inhibitor therapy. JCO Precision Oncol. 2, 1–8 (2018).
Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).
pubmed: 25838375
doi: 10.1126/science.aaa4971
Wu, Y. M. et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 173, 1770–1782.e14 (2018). This study shows that CDK12 loss defines a distinct subset of metastatic castration-resistant prostate cancers characterized by focal tandem duplications, leading to gene fusions and marked differential gene expression. A further subset may benefit from immune checkpoint inhibitors.
pubmed: 29906450
doi: 10.1016/j.cell.2018.04.034
Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).
pubmed: 28596308
pmcid: 5576142
doi: 10.1126/science.aan6733
Guedes, L. B. et al. MSH2 loss in primary prostate cancer. Clin. Cancer Res. 23, 6863–6874 (2017).
pubmed: 28790115
pmcid: 5690834
doi: 10.1158/1078-0432.CCR-17-0955
Jenzer, M. et al. The BRCA2 mutation status shapes the immune phenotype of prostate cancer. Cancer Immunol. Immunother. 68, 1621–1633 (2019).
pubmed: 31549213
pmcid: 6805809
doi: 10.1007/s00262-019-02393-x
Haraldsdottir, S. et al. Prostate cancer incidence in males with Lynch syndrome. Genet. Med. 16, 553–557 (2014).
pubmed: 24434690
pmcid: 4289599
doi: 10.1038/gim.2013.193
Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).
pubmed: 26028255
pmcid: 4481136
doi: 10.1056/NEJMoa1500596
Pursell, Z. F. et al. polymerase epsilon participates in leading-strand DNA replication. Science 317, 127–130 (2007).
pubmed: 17615360
pmcid: 2233713
doi: 10.1126/science.1144067
Rayner, E. et al. A panoply of errors: polymerase proofreading domain mutations in cancer. Nat. Rev. Cancer 16, 71–81 (2016).
pubmed: 26822575
doi: 10.1038/nrc.2015.12
Johanns, T. M. et al. Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 6, 1230–1236 (2016).
pubmed: 27683556
pmcid: 5140283
doi: 10.1158/2159-8290.CD-16-0575
Mehnert, J. M. et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J. Clin. Invest. 126, 2334–2340 (2016).
pubmed: 27159395
pmcid: 4887167
doi: 10.1172/JCI84940
Snyder, A. & Wolchok, J. D. Successful treatment of a patient with glioblastoma and a germline POLE mutation: where next? Cancer Discov. 6, 1210–1211 (2016).
pubmed: 27807100
pmcid: 5109825
doi: 10.1158/2159-8290.CD-16-1056
Howitt, B. E. et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 1, 1319–1323 (2015).
pubmed: 26181000
doi: 10.1001/jamaoncol.2015.2151
Bajrami, I. et al. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. Cancer Res. 74, 287–297 (2014).
pubmed: 24240700
doi: 10.1158/0008-5472.CAN-13-2541
Blazek, D. et al. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 25, 2158–2172 (2011).
pubmed: 22012619
pmcid: 3205586
doi: 10.1101/gad.16962311
Ekumi, K. M. et al. Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex. Nucleic Acids Res. 43, 2575–2589 (2015).
pubmed: 25712099
pmcid: 4357706
doi: 10.1093/nar/gkv101
Joshi, P. M., Sutor, S. L., Huntoon, C. J. & Karnitz, L. M. Ovarian cancer-associated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors. J. Biol. Chem. 289, 9247–9253 (2014).
pubmed: 24554720
pmcid: 3979363
doi: 10.1074/jbc.M114.551143
Juan, H. C., Lin, Y., Chen, H. R. & Fann, M. J. Cdk12 is essential for embryonic development and the maintenance of genomic stability. Cell Death Differ. 23, 1038–1048 (2016).
pubmed: 26658019
doi: 10.1038/cdd.2015.157
Mirochnik, Y. et al. Androgen receptor drives cellular senescence. PLoS ONE 7, e31052 (2012).
pubmed: 22403609
pmcid: 3293868
doi: 10.1371/journal.pone.0031052
Roediger, J. et al. Supraphysiological androgen levels induce cellular senescence in human prostate cancer cells through the Src–Akt pathway. Mol. Cancer 13, 214 (2014).
pubmed: 25216853
pmcid: 4171558
doi: 10.1186/1476-4598-13-214
Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).
pubmed: 12912919
pmcid: 175806
doi: 10.1093/emboj/cdg417