Pulmonary hypertension due to left heart disease: diagnostic value of pulmonary artery distensibility.


Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
Nov 2020
Historique:
received: 30 12 2019
accepted: 14 05 2020
revised: 28 03 2020
pubmed: 18 6 2020
medline: 25 3 2021
entrez: 18 6 2020
Statut: ppublish

Résumé

To evaluate how pulmonary artery (PA) distensibility performs in detecting pulmonary hypertension due to left heart disease (PH-LHD) in comparison with parameters from ungated computed tomography (CT) and echocardiography. One hundred patients (79 men, mean age = 63 ± 17 years) with either severe heart failure with reduced ejection fraction (HFrEF), aortic stenosis, or primary mitral regurgitation prospectively underwent right heart catheterization, ungated CT, ECG-gated CT, and echocardiography. During the ECG-gated CT, the right PA distensibility was calculated. In ungated CT, dPA, dPA/AA, the ratio of dPA to the diameter of the vertebra, segmental PA diameter, segmental PA-to-bronchus ratio, and the main PA volume were measured; the egg-and-banana sign was recorded. During echocardiography, the tricuspid regurgitation (TR) gradient was measured. The areas under the ROC curves (AUC) of these signs were computed and compared with DeLong test. Correlation between PA distensibility and PA pressure (PAP) was investigated through Pearson's coefficient. PA distensibility was lower in patients with PH than in those without PH (11.4 vs. 21.2%, p < 0.001) and correlated negatively with mean PAP (r = - 0.72, p < 0.001). Age, PA size, and mean PAP were independent predictors of PA distensibility. PA distensibility < 18% detected PH-LHD with 96% sensitivity and 73% specificity; its AUC was 0.92, larger than that of any other sign at ungated CT and TR gradient (AUC ranging from 0.54 to 0.83, DeLong: p ranging from 0.020 to < 0.001). PA distensibility on an ECG-gated CT can detect PH-LHD better than the parameters reflecting PA dilatation in ungated CT or TR gradient in the echocardiography of patients with severe HFrEF, aortic stenosis, or mitral regurgitation. • In left heart disease, pulmonary artery distensibility is lower in patients with PH than in those without pulmonary hypertension (11.4 vs. 21.2%, p < 0.001). • In left heart disease, pulmonary artery distensibility detects pulmonary hypertension with an area under the receiver operating curve of 0.92. • In left heart disease, the area under the receiver operating curve of pulmonary artery distensibility for detecting pulmonary hypertension is larger than that of all other signs at ungated CT (p from 0.019 to < 0.001) and tricuspid regurgitation gradient at echocardiography (p = 0.020).

Identifiants

pubmed: 32548647
doi: 10.1007/s00330-020-06959-7
pii: 10.1007/s00330-020-06959-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6204-6212

Références

Galie N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37(1):67–119
doi: 10.1093/eurheartj/ehv317
Vachiery JL, Adir Y, Barbera JA et al (2013) Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol 62(25 Suppl):D100–D108
doi: 10.1016/j.jacc.2013.10.033
Ghio S, Gavazzi A, Campana C et al (2001) Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 37(1):183–188
doi: 10.1016/S0735-1097(00)01102-5
Rosenkranz S, Gibbs JS, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiery JL (2016) Left ventricular heart failure and pulmonary hypertension. Eur Heart J 37(12):942–954
doi: 10.1093/eurheartj/ehv512
Janda S, Shahidi N, Gin K, Swiston J (2011) Diagnostic accuracy of echocardiography for pulmonary hypertension: a systematic review and meta-analysis. Heart 97(8):612–622
doi: 10.1136/hrt.2010.212084
Kuriyama K, Gamsu G, Stern RG, Cann CE, Herfkens RJ, Brundage BH (1984) CT-determined pulmonary artery diameters in predicting pulmonary hypertension. Invest Radiol 19(1):16–22
doi: 10.1097/00004424-198401000-00005
Tan RT, Kuzo R, Goodman LR, Siegel R, Haasler GB, Presberg KW (1998) Utility of CT scan evaluation for predicting pulmonary hypertension in patients with parenchymal lung disease. Chest 113(5):1250–1256
doi: 10.1378/chest.113.5.1250
Ng CS, Wells AU, Padley SP (1999) CT sign of chronic pulmonary arterial hypertension: the ratio of main pulmonary artery to aortic diameter. J Thorac Imaging 14(4):270–278
doi: 10.1097/00005382-199910000-00007
Chan AL, Juarez MM, Shelton DK, MacDonald T, Li CS, Lin TC, Albertson TE (2011) Novel computed tomographic chest metrics to detect pulmonary hypertension. BMC Med Imaging 11:7
doi: 10.1186/1471-2342-11-7
Davarpanah AH, Hodnett PA, Farrelly CT et al (2011) MDCT bolus tracking data as an adjunct for predicting the diagnosis of pulmonary hypertension and concomitant right-heart failure. AJR Am J Roentgenol 197(5):1064–1072
doi: 10.2214/AJR.10.5420
Truong QA, Massaro JM, Rogers IS et al (2012) Reference values for normal pulmonary artery dimensions by noncontrast cardiac computed tomography: the Framingham Heart Study. Circ Cardiovasc Imaging 5(1):147–154
doi: 10.1161/CIRCIMAGING.111.968610
Eberhard M, Mastalerz M, Pavicevic J et al (2017) Value of CT signs and measurements as a predictor of pulmonary hypertension and mortality in symptomatic severe aortic valve stenosis. Int J Cardiovasc Imaging 33(10):1637–1651
doi: 10.1007/s10554-017-1180-5
Colin GC, Gerber BL, de Meester de Ravenstein C et al (2018) Pulmonary hypertension due to left heart disease: diagnostic and prognostic value of CT in chronic systolic heart failure. Eur Radiol 28(11):4643–4653
doi: 10.1007/s00330-018-5455-6
O’Sullivan CJ, Montalbetti M, Zbinden R et al (2018) Screening for pulmonary hypertension with multidetector computed tomography among patients with severe aortic stenosis undergoing transcatheter aortic valve implantation. Front Cardiovasc Med 5:63
doi: 10.3389/fcvm.2018.00063
Scelsi CL, Bates WB, Melenevsky YV, Sharma GK, Thomson NB, Keshavamurthy JH (2018) Egg-and-banana sign: a novel diagnostic CT marker for pulmonary hypertension. AJR Am J Roentgenol 210(6):1235–1239
doi: 10.2214/AJR.17.19208
Li M, Wang S, Lin W et al (2018) Cardiovascular parameters of chest CT scan in estimating pulmonary arterial pressure in patients with pulmonary hypertension. Clin Respir J 12(2):572–579
doi: 10.1111/crj.12564
Devaraj A, Wells AU, Meister MG, Corte TJ, Wort SJ, Hansell DM (2010) Detection of pulmonary hypertension with multidetector CT and echocardiography alone and in combination. Radiology 254(2):609–616
doi: 10.1148/radiol.09090548
Spruijt OA, Bogaard HJ, Heijmans MW et al (2015) Predicting pulmonary hypertension with standard computed tomography pulmonary angiography. Int J Cardiovasc Imaging 31(4):871–879
doi: 10.1007/s10554-015-0618-x
Rengier F, Wörz S, Melzig C et al (2016) Automated 3D volumetry of the pulmonary arteries based on magnetic resonance angiography has potential for predicting pulmonary hypertension. PLoS One 11(9):e016251
doi: 10.1371/journal.pone.0162516
Melzig C, Wörz S, Egenlauf E et al (2019) Combined automated 3D volumetry by pulmonary CT angiography and echocardiography for detection of pulmonary hypertension. Eur Radiol 29(11):6059–6068
doi: 10.1007/s00330-019-06188-7
Revel MP, Faivre JB, Remy-Jardin M, Delannoy-Deken V, Duhamel A, Remy J (2009) Pulmonary hypertension: ECG-gated 64-section CT angiographic evaluation of new functional parameters as diagnostic criteria. Radiology 250(2):558–566
Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 27:2129–2200
doi: 10.1093/eurheartj/ehw128
Stamm G (2012) Collective radiation dose from MDCT: critical review of surveys studies. In: Tack D, Kalra MK, Gevenois PA (eds) Radiation dose from multidetector CT, 2nd edn. Springer-Verlag, Heidelberg, pp 209–229
Tji-Joong Gan C, Lankhaar JW, Westerhof N et al (2007) Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132(6):1906–1912
doi: 10.1378/chest.07-1246
Sanz J, Kariisa M, Dellegrottaglie S et al (2009) Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc Imaging 2(3):286–295
Sanz J, Kuschnir P, Rius T et al (2007) Pulmonary arterial hypertension: noninvasive detection with phase-contrast MR imaging. Radiology 243(1):70–79
doi: 10.1148/radiol.2431060477
Kasai H, Sugiura T, Tanabe N et al (2014) Electrocardiogram-gated 320-slice multidetector computed tomography for the measurement of pulmonary arterial distensibility in chronic thromboembolic pulmonary hypertension. PLoS One 9(11):e111563
doi: 10.1371/journal.pone.0111563
Abel E, Jankowski A, Pison C, Luc Bosson J, Bouvaist H, Ferretti GR (2012) Pulmonary artery and right ventricle assessment in pulmonary hypertension: correlation between functional parameters of ECG-gated CT and right-side heart catheterization. Acta Radiol 53(7):720–727
doi: 10.1258/ar.2012.120009
Jardim C, Rochitte CE, Humbert M et al (2007) Pulmonary artery distensibility in pulmonary arterial hypertension: an MRI pilot study. Eur Respir J 29:476–481
doi: 10.1183/09031936.00016806
Porter TR, Taylor DO, Fields J et al (1993) Direct in vivo evaluation of pulmonary arterial pathology in chronic congestive heart failure with catheter-based intravascular ultrasound imaging. Am J Cardiol 71:754–757
doi: 10.1016/0002-9149(93)91024-C
Andersen OS, Smiseth OA, Dokainish H et al (2017) Estimating left ventricular filling pressure by echocardiography. J Am Coll Cardiol 69(15):1937–1948
doi: 10.1016/j.jacc.2017.01.058

Auteurs

Geoffrey C Colin (GC)

Division of Radiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCL), Avenue Hippocrate 10, 1200, Brussels, Belgium. gc.colin.md@gmail.com.

Guillaume Verlynde (G)

Division of Radiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCL), Avenue Hippocrate 10, 1200, Brussels, Belgium.

Anne-Catherine Pouleur (AC)

Division of Cardiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCL), Brussels, Belgium.

Bernhard L Gerber (BL)

Division of Cardiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCL), Brussels, Belgium.

Christophe Beauloye (C)

Division of Cardiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCL), Brussels, Belgium.

Joelle Kefer (J)

Division of Cardiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCL), Brussels, Belgium.

Emmanuel Coche (E)

Division of Radiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCL), Avenue Hippocrate 10, 1200, Brussels, Belgium.

Jean-Luc Vachiéry (JL)

Department of Cardiology, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium.

Pierre Alain Gevenois (PA)

Department of Radiology, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium.

Benoit Ghaye (B)

Division of Radiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCL), Avenue Hippocrate 10, 1200, Brussels, Belgium.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH