Enabling Natural Abundance
Journal
The journal of physical chemistry letters
ISSN: 1948-7185
Titre abrégé: J Phys Chem Lett
Pays: United States
ID NLM: 101526034
Informations de publication
Date de publication:
16 Jul 2020
16 Jul 2020
Historique:
pubmed:
20
6
2020
medline:
26
1
2021
entrez:
20
6
2020
Statut:
ppublish
Résumé
Dynamic nuclear polarization (DNP) significantly enhances the sensitivity of nuclear magnetic resonance (NMR), increasing its applications and the quality of NMR spectroscopy as a characterization tool for materials. Efficient spin diffusion among the nuclear spins is considered to be essential for spreading the hyperpolarization throughout the sample, enabling large DNP enhancements. This scenario mostly limits the polarization enhancement of low-sensitivity nuclei in inorganic materials to the surface sites when the polarization source is an exogenous radical. In metal-ion-based DNP, the polarization agents are distributed in the bulk sample and act as a source of both relaxation and polarization enhancement. We have found that as long as the polarization agent is the main source of relaxation, the enhancement does not depend on the distance between the nucleus and dopant. As a consequence, the requirement of efficient spin diffusion is lifted, and the entire sample can be directly polarized. We exploit this finding to measure high-quality NMR spectra of
Identifiants
pubmed: 32551646
doi: 10.1021/acs.jpclett.0c01527
pmc: PMC7370305
doi:
Substances chimiques
Oxides
0
Oxygen Isotopes
0
Oxygen-17
0
Titanium
D1JT611TNE
Iron
E1UOL152H7
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5439-5445Références
Chem Commun (Camb). 2017 Feb 9;53(13):2142-2145
pubmed: 28134945
J Am Chem Soc. 2015 Jul 8;137(26):8336-9
pubmed: 26098846
J Chem Phys. 2008 Feb 7;128(5):052211
pubmed: 18266416
Prog Nucl Magn Reson Spectrosc. 2011 Aug;59(2):121-96
pubmed: 21742158
Phys Rev Lett. 1990 Jul 30;65(5):614-617
pubmed: 10042968
J Phys Chem Lett. 2019 Sep 5;10(17):4770-4776
pubmed: 31347850
J Phys Chem Lett. 2018 Sep 6;9(17):5150-5159
pubmed: 30107121
Solid State Nucl Magn Reson. 2019 Sep;101:116-143
pubmed: 31189121
Phys Rev B Condens Matter. 1995 May 1;51(17):11344-11347
pubmed: 9977862
Angew Chem Int Ed Engl. 2017 Jul 24;56(31):9165-9169
pubmed: 28499071
J Am Chem Soc. 2013 Feb 27;135(8):2975-8
pubmed: 23379257
J Magn Reson. 2015 Dec;261:95-100
pubmed: 26547016
Chem Commun (Camb). 2017 Feb 23;53(17):2563-2566
pubmed: 28184389
J Magn Reson. 2010 Dec;207(2):176-89
pubmed: 21084205
Prog Nucl Magn Reson Spectrosc. 2017 Nov;102-103:120-195
pubmed: 29157490
J Phys Chem C Nanomater Interfaces. 2020 Apr 2;124(13):7082-7090
pubmed: 32273937
Solid State Nucl Magn Reson. 2018 Oct;94:26-30
pubmed: 30125797
Chemphyschem. 2018 Sep 5;19(17):2139-2142
pubmed: 29770999
Chem Commun (Camb). 2018 Apr 3;54(28):3472-3475
pubmed: 29561036
J Chem Phys. 2012 Jan 7;136(1):015101
pubmed: 22239801
Phys Rev B Condens Matter. 1996 Dec 1;54(21):15291-15298
pubmed: 9985592
J Phys Chem B. 2017 Aug 31;121(34):8132-8141
pubmed: 28762740
Phys Chem Chem Phys. 2019 May 15;21(19):10185-10194
pubmed: 31063169
Chem Rev. 2011 Feb 9;111(2):530-62
pubmed: 20843066
Phys Chem Chem Phys. 2019 Jan 23;21(4):2166-2176
pubmed: 30644474
J Am Chem Soc. 2019 Jan 9;141(1):451-462
pubmed: 30525555
Angew Chem Int Ed Engl. 2011 Aug 29;50(36):8367-70
pubmed: 21770004
Solid State Nucl Magn Reson. 2004 Sep;26(2):105-12
pubmed: 15276641
Phys Rev B Condens Matter. 1994 Jul 1;50(2):822-830
pubmed: 9975748
J Am Chem Soc. 2018 Jun 27;140(25):7946-7951
pubmed: 29857646
J Phys Chem Lett. 2019 Jun 20;10(12):3501-3508
pubmed: 31150249
J Am Chem Soc. 2011 Apr 20;133(15):5648-51
pubmed: 21446700