Critical Differences between the Binding Features of the Spike Proteins of SARS-CoV-2 and SARS-CoV.
Angiotensin-Converting Enzyme 2
Antibodies, Viral
/ chemistry
Betacoronavirus
/ chemistry
Binding Sites
Humans
Molecular Dynamics Simulation
Peptidyl-Dipeptidase A
/ chemistry
Protein Binding
Severe acute respiratory syndrome-related coronavirus
/ chemistry
SARS-CoV-2
Spike Glycoprotein, Coronavirus
/ chemistry
Static Electricity
Journal
The journal of physical chemistry. B
ISSN: 1520-5207
Titre abrégé: J Phys Chem B
Pays: United States
ID NLM: 101157530
Informations de publication
Date de publication:
16 07 2020
16 07 2020
Historique:
pubmed:
20
6
2020
medline:
29
7
2020
entrez:
20
6
2020
Statut:
ppublish
Résumé
The COVID-19 caused by SARS-CoV-2 has spread globally and caused tremendous loss of lives and properties, and it is of utmost urgency to understand its propagation process and to find ways to slow down the epidemic. In this work, we used a coarse-grained model to calculate the binding free energy of SARS-CoV-2 or SARS-CoV to their human receptor ACE2. The investigation of the free energy contribution of the interacting residues indicates that the residues located outside the receptor binding domain are the source of the stronger binding of the novel virus. Thus, the current results suggest that the essential evolution of SARS-CoV-2 happens remotely from the binding domain at the spike protein trimeric body. Such evolution may facilitate the conformational change and the infection process that occurs after the virus is bound to ACE2. By studying the binding pattern between SARS-CoV antibody m396 and SARS-CoV-2, it is found that the remote energetic contribution is missing, which might explain the absence of cross-reactivity of such antibodies.
Identifiants
pubmed: 32551652
doi: 10.1021/acs.jpcb.0c04317
pmc: PMC7341686
mid: NIHMS1922493
doi:
Substances chimiques
Antibodies, Viral
0
Spike Glycoprotein, Coronavirus
0
Peptidyl-Dipeptidase A
EC 3.4.15.1
ACE2 protein, human
EC 3.4.17.23
Angiotensin-Converting Enzyme 2
EC 3.4.17.23
Types de publication
Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
5907-5912Subventions
Organisme : NIGMS NIH HHS
ID : R35 GM122472
Pays : United States
Références
Lancet. 2020 Feb 22;395(10224):565-574
pubmed: 32007145
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10321-10326
pubmed: 30254162
N Engl J Med. 2020 Feb 20;382(8):727-733
pubmed: 31978945
Nat Med. 2020 Apr;26(4):450-452
pubmed: 32284615
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19484-19489
pubmed: 31511421
Science. 2020 May 8;368(6491):630-633
pubmed: 32245784
Antiviral Res. 2020 Apr;176:104742
pubmed: 32057769
Science. 2020 Mar 27;367(6485):1444-1448
pubmed: 32132184
J Phys Chem B. 2017 Dec 21;121(50):11284-11291
pubmed: 29156125
Nature. 2020 Mar;579(7798):270-273
pubmed: 32015507
Science. 2020 Mar 13;367(6483):1260-1263
pubmed: 32075877
JAMA. 2020 Mar 17;323(11):1061-1069
pubmed: 32031570
Proteins. 2016 Jan;84(1):92-117
pubmed: 26531155
J Mol Biol. 1993 Dec 5;234(3):779-815
pubmed: 8254673
Cell. 2020 Apr 16;181(2):281-292.e6
pubmed: 32155444
J Biol Chem. 2006 Jun 9;281(23):15829-36
pubmed: 16597622
Annu Rev Virol. 2016 Sep 29;3(1):237-261
pubmed: 27578435
Proteins. 2014 Jul;82(7):1168-85
pubmed: 25050439
Proteins. 2020 Jan;88(1):127-134
pubmed: 31294890
J Virol. 2020 Mar 17;94(7):
pubmed: 31996437
PLoS Pathog. 2018 Aug 13;14(8):e1007236
pubmed: 30102747
Viruses. 2020 Apr 30;12(5):
pubmed: 32365751
Nature. 2020 May;581(7807):215-220
pubmed: 32225176
J Virol. 2008 Sep;82(17):8887-90
pubmed: 18562523
Sci Rep. 2018 Oct 24;8(1):15701
pubmed: 30356097
Annu Rev Phys Chem. 2011;62:41-64
pubmed: 21034218
Nature. 2020 Mar;579(7798):265-269
pubmed: 32015508