Structural basis of the activation of a metabotropic GABA receptor.
Allosteric Regulation
/ drug effects
Apoproteins
/ chemistry
Binding Sites
/ drug effects
Cryoelectron Microscopy
GABA-B Receptor Agonists
/ chemistry
Humans
Models, Molecular
Protein Domains
/ drug effects
Protein Multimerization
/ drug effects
Receptors, GABA-B
/ chemistry
Signal Transduction
Structure-Activity Relationship
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
16
10
2019
accepted:
07
04
2020
pubmed:
20
6
2020
medline:
15
9
2020
entrez:
20
6
2020
Statut:
ppublish
Résumé
Metabotropic γ-aminobutyric acid receptors (GABA
Identifiants
pubmed: 32555460
doi: 10.1038/s41586-020-2408-4
pii: 10.1038/s41586-020-2408-4
pmc: PMC8020835
mid: NIHMS1582966
doi:
Substances chimiques
Apoproteins
0
GABA-B Receptor Agonists
0
Receptors, GABA-B
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
298-303Subventions
Organisme : NIGMS NIH HHS
ID : R35 GM127086
Pays : United States
Références
Bowery, N. G. et al. International Union of Pharmacology. XXXIII. Mammalian γ-aminobutyric acid
pubmed: 12037141
pmcid: 12037141
Comps-Agrar, L. et al. The oligomeric state sets GABA
pubmed: 21552208
pmcid: 21552208
Sieghart, W. Structure, pharmacology, and function of GABA
pubmed: 17175817
pmcid: 17175817
Gassmann, M. & Bettler, B. Regulation of neuronal GABA
pubmed: 22595784
pmcid: 22595784
Lüscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C. & Nicoll, R. A. G protein-coupled inwardly rectifying K
pubmed: 9331358
pmcid: 9331358
Schuler, V. et al. Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA
pubmed: 11498050
pmcid: 11498050
Cousins, M. S., Roberts, D. C. S. & de Wit, H. GABA
pubmed: 11841892
pmcid: 11841892
Vacher, C. M. & Bettler, B. GABA
pubmed: 12871035
pmcid: 12871035
Chang, E. et al. A review of spasticity treatments: pharmacological and interventional approaches. Crit. Rev. Phys. Rehabil. Med. 25, 11–22 (2013).
pubmed: 25750484
pmcid: 25750484
de Beaurepaire, R. Suppression of alcohol dependence using baclofen: a 2-year observational study of 100 patients. Front. Psychiatry 3, 103 (2012).
pubmed: 23316172
pmcid: 23316172
Addolorato, G. et al. Baclofen efficacy in reducing alcohol craving and intake: a preliminary double-blind randomized controlled study. Alcohol Alcohol. 37, 504–508 (2002).
pubmed: 12217947
pmcid: 12217947
Lapin, I. Phenibut (β-phenyl-GABA): a tranquilizer and nootropic drug. CNS Drug Rev. 7, 471–481 (2001).
pubmed: 11830761
pmcid: 11830761
Dalmau, J. & Graus, F. Antibody-mediated encephalitis. N. Engl. J. Med. 378, 840–851 (2018).
pubmed: 29490181
pmcid: 29490181
Hamdan, F. F. et al. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am. J. Hum. Genet. 101, 664–685 (2017).
pubmed: 29100083
pmcid: 29100083
Vuillaume, M.-L. et al. A novel mutation in the transmembrane 6 domain of GABBR2 leads to a Rett-like phenotype. Ann. Neurol. 83, 437–439 (2018)
pubmed: 29369404
pmcid: 29369404
Yoo, Y. et al. GABBR2 mutations determine phenotype in Rett syndrome and epileptic encephalopathy. Ann. Neurol. 82, 466–478 (2017).
pubmed: 28856709
pmcid: 28856709
Kniazeff, J., Prézeau, L., Rondard, P., Pin, J.-P. & Goudet, C. Dimers and beyond: the functional puzzles of class C GPCRs. Pharmacol. Ther. 130, 9–25 (2011).
pubmed: 21256155
pmcid: 21256155
Stewart, G. D., Comps-Agrar, L., Nørskov-Lauritsen, L. B., Pin, J. P. & Kniazeff, J. Allosteric interactions between GABA
pubmed: 29305121
pmcid: 29305121
White, J. H. et al. Heterodimerization is required for the formation of a functional GABA
pubmed: 9872316
pmcid: 9872316
Margeta-Mitrovic, M., Jan, Y. N. & Jan, L. Y. A trafficking checkpoint controls GABA
pubmed: 10939334
pmcid: 10939334
Galvez, T. et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA
pubmed: 11331581
pmcid: 11331581
Robbins, M. J. et al. GABA
pubmed: 11588177
pmcid: 11588177
Geng, Y., Bush, M., Mosyak, L., Wang, F. & Fan, Q. R. Structural mechanism of ligand activation in human GABA
pubmed: 24305054
pmcid: 24305054
Pin, J.-P. & Bettler, B. Organization and functions of mGlu and GABA
pubmed: 27905440
pmcid: 27905440
Howson, W., Mistry, J., Broekman, M. & Hills, J. M. Biological activity of 3-aminopropyl (methyl) phosphinic acid, a potent and selective GABA
Frankowska, M., Filip, M. & Przegaliński, E. Effects of GABA
pubmed: 18195453
pmcid: 18195453
Cryan, J. F. et al. Behavioral characterization of the novel GABA
pubmed: 15113848
pmcid: 15113848
Koehl, A. et al. Structural insights into the activation of metabotropic glutamate receptors. Nature 566, 79–84 (2019).
pubmed: 30675062
pmcid: 30675062
Isberg, V. et al. Generic GPCR residue numbers – aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 36, 22–31 (2015).
pubmed: 25541108
pmcid: 25541108
Xue, L. et al. Rearrangement of the transmembrane domain interfaces associated with the activation of a GPCR hetero-oligomer. Nat. Commun. 10, 2765 (2019).
pubmed: 31235691
pmcid: 31235691
Duthey, B. et al. A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA
pubmed: 11711539
pmcid: 11711539
Urwyler, S. et al. N,N′-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: novel allosteric enhancers of γ-aminobutyric acid
pubmed: 12954816
pmcid: 12954816
Monnier, C. et al. Trans-activation between 7TM domains: implication in heterodimeric GABA
pubmed: 21063387
pmcid: 21063387
Kniazeff, J. et al. Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat. Struct. Mol. Biol. 11, 706–713 (2004).
pubmed: 15235591
pmcid: 15235591
Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Mastronarde, D. N. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019).
pubmed: 31086343
pmcid: 31086343
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466
pmcid: 28250466
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
pubmed: 6760662
pmcid: 6760662
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051
pmcid: 30412051
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
pmcid: 28165473
Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).
pubmed: 29788355
pmcid: 29788355
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
pubmed: 28710774
pmcid: 28710774
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702
pmcid: 20124702
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
Huang, J. & MacKerell, A. D. Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).
pubmed: 23832629
pmcid: 23832629
Abagyan, R., Totrov, M. & Kuznetsov, D. ICM: a new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506 (1994).
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
pubmed: 18351591
pmcid: 18351591
Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).
pubmed: 21890895
pmcid: 21890895
Kim, S. et al. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J. Comput. Chem. 38, 1879–1886 (2017).
pubmed: 28497616
pmcid: 28497616
Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011).
pubmed: 21500218
pmcid: 21500218
Bakan, A., Meireles, L. M. & Bahar, I. ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 27, 1575–1577 (2011).
pubmed: 21471012
pmcid: 21471012
Gur, M., Zomot, E. & Bahar, I. Global motions exhibited by proteins in micro- to milliseconds simulations concur with anisotropic network model predictions. J. Chem. Phys. 139, 121912 (2013).
pubmed: 24089724
pmcid: 24089724
Krissinel, E. Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res. 43, W314–W319 (2015).
pubmed: 25908787
pmcid: 25908787