Mass spectrometry reveals the chemistry of formaldehyde cross-linking in structured proteins.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
19 06 2020
19 06 2020
Historique:
received:
10
03
2020
accepted:
02
06
2020
entrez:
21
6
2020
pubmed:
21
6
2020
medline:
29
8
2020
Statut:
epublish
Résumé
Whole-cell cross-linking coupled to mass spectrometry is one of the few tools that can probe protein-protein interactions in intact cells. A very attractive reagent for this purpose is formaldehyde, a small molecule which is known to rapidly penetrate into all cellular compartments and to preserve the protein structure. In light of these benefits, it is surprising that identification of formaldehyde cross-links by mass spectrometry has so far been unsuccessful. Here we report mass spectrometry data that reveal formaldehyde cross-links to be the dimerization product of two formaldehyde-induced amino acid modifications. By integrating the revised mechanism into a customized search algorithm, we identify hundreds of cross-links from in situ formaldehyde fixation of human cells. Interestingly, many of the cross-links could not be mapped onto known atomic structures, and thus provide new structural insights. These findings enhance the use of formaldehyde cross-linking and mass spectrometry for structural studies.
Identifiants
pubmed: 32561732
doi: 10.1038/s41467-020-16935-w
pii: 10.1038/s41467-020-16935-w
pmc: PMC7305180
doi:
Substances chimiques
Amino Acids
0
Cross-Linking Reagents
0
Proteins
0
Formaldehyde
1HG84L3525
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3128Subventions
Organisme : Israel Science Foundation (ISF)
ID : 1768/15
Pays : International
Références
Karnovsky, M. J. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137–138A (1965).
Carson, F. L., Martin, J. H. & Lynn, A. J. Formalin fixation for electron microscopy: a re-evaluation. J. Clin. Pathol. 59, 365–373 (1973).
doi: 10.1093/ajcp/59.3.365
Solomon, M. J. & Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures.. PNAS 82, 6470–6474 (1985).
pubmed: 2995966
doi: 10.1073/pnas.82.19.6470
Chang, Y. T. & Loew, G. H. Reaction mechanisms of formaldehyde with endocyclic imino groups of nucleic acid bases. J. Am. Chem. Soc. 116, 3548–3555 (1994).
doi: 10.1021/ja00087a048
Metz, B. et al. Identification of formaldehyde-induced modifications in proteins reactions with model peptides. J. Biol. Chem. 279, 6235–6243 (2004).
pubmed: 14638685
doi: 10.1074/jbc.M310752200
Hoffman, E. A., Frey, B. L., Smith, L. M. & Auble, D. T. Formaldehyde crosslinking: a tool for the study of chromatin complexes. J. Biol. Chem. 290, 26404–26411 (2015).
pubmed: 26354429
pmcid: 4646298
doi: 10.1074/jbc.R115.651679
Fraenkel-Conrat, H. & Olcott, H. S. The reaction of formaldehyde with proteins. V. Cross-linking between amino and primary amide or guanidyl groups. J. Am. Chem. Soc. 70, 2673–2684 (1948).
pubmed: 18876976
doi: 10.1021/ja01188a018
Feldman, M. Y. Reactions of nucleic acids and nucleoproteins with formaldehyde. Prog. Nucleic Acid Res. Mol. Biol. 13, 1–49 (1973).
pubmed: 4573489
doi: 10.1016/S0079-6603(08)60099-9
Metz, B. et al. Identification of formaldehyde-induced modifications in proteins: reactions with insulin. Bioconjugate Chem. 17, 815–822 (2006).
doi: 10.1021/bc050340f
Toews, J., Rogalski, J. C., Clark, T. J. & Kast, J. Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions. Anal. Chim. Acta 618, 168–183 (2008).
pubmed: 18513538
doi: 10.1016/j.aca.2008.04.049
Wang, Z. J. et al. Chemical modifications of peptides and proteins with low concentration formaldehyde studied by mass spectrometry. Chin. J. Anal. Chem. 44, 1193–1199 (2016).
doi: 10.1016/S1872-2040(16)60949-0
Leitner, A., Faini, M., Stengel, F. & Aebersold, R. Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends Biochem Sci. 41, 20–32 (2016).
pubmed: 26654279
doi: 10.1016/j.tibs.2015.10.008
Schneider, M., Belsom, A. & Rappsilber, J. Protein tertiary structure by crosslinking/mass spectrometry. Trends Biochem Sci. 43, 157–169 (2018).
pubmed: 29395654
pmcid: 5854373
doi: 10.1016/j.tibs.2017.12.006
Sinz, A. Cross-linking/mass spectrometry for studying protein structures and protein-protein interactions: where are we now and where should we go from here? Angew. Chem. Int Ed. Engl. 57, 6390–6396 (2018).
pubmed: 29334167
doi: 10.1002/anie.201709559
Herzog, F. et al. Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337, 1348–1352 (2012).
pubmed: 22984071
doi: 10.1126/science.1221483
Rappsilber, J. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J. Struct. Biol. 173, 530–540 (2011).
pubmed: 21029779
pmcid: 3043253
doi: 10.1016/j.jsb.2010.10.014
Weisbrod, C. R. et al. In vivo protein interaction network identified with a novel real-time cross-linked peptide identification strategy. J. Proteome Res. 12, 1569–1579 (2013).
pubmed: 23413883
pmcid: 3925062
doi: 10.1021/pr3011638
Kaake, R. M. et al. A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells. Mol. Cell Proteom. 13, 3533–3543 (2014).
doi: 10.1074/mcp.M114.042630
Chavez, J. D. et al. Chemical crosslinking mass spectrometry analysis of protein conformations and supercomplexes in heart tissue. Cell Syst. 6, 136–141 (2018).
pubmed: 29199018
doi: 10.1016/j.cels.2017.10.017
Fasci, D., van Ingen, H., Scheltema, R. A. & Heck, A. J. R. Histone interaction landscapes visualized by crosslinking mass spectrometry in intact cell nuclei. Mol. Cell Proteom. 17, 2018–2033 (2018).
doi: 10.1074/mcp.RA118.000924
Robinson, P. J. et al. Structure of a complete mediator-RNA polymerase II pre-initiation complex. Cell 166, 1411–1422 (2016).
pubmed: 27610567
pmcid: 5589196
doi: 10.1016/j.cell.2016.08.050
Wang, X. et al. The proteasome-interacting Ecm29 protein disassembles the 26 s proteasome in response to oxidative stress. J. Biol. Chem. 292, 16310–16320 (2017).
pubmed: 28821611
pmcid: 5625060
doi: 10.1074/jbc.M117.803619
Lenz, S., Giese, S. H., Fischer, L. & Rappsilber, J. In-search assignment of monoisotopic peaks improves the identification of cross-linked peptides. J. Proteome Res. 17, 3923–3931 (2018).
pubmed: 30293428
pmcid: 6279313
doi: 10.1021/acs.jproteome.8b00600
Götze, M., Iacobucci, C., Ihling, C. H. & Sinz, A. A simple cross-linking/mass spectrometry workflow for studying system-wide protein interactions. Anal. Chem. 91, 10236–10244 (2019).
pubmed: 31283178
doi: 10.1021/acs.analchem.9b02372
Sinz, A. Divide and conquer: cleavable cross-linkers to study protein conformation and protein-protein interactions. Anal. Bioanal. Chem. 409, 33–44 (2017).
pubmed: 27734140
doi: 10.1007/s00216-016-9941-x
Iacobucci, C. et al. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein-protein interactions. Nat. Protoc. 13, 2864–2889 (2018).
pubmed: 30382245
doi: 10.1038/s41596-018-0068-8
Klykov, O. et al. Efficient and robust proteome-wide approaches for cross-linking mass spectrometry. Nat. Protoc. 13, 2964–2990 (2018).
pubmed: 30446747
doi: 10.1038/s41596-018-0074-x
Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell Proteom. 11, M111.014050 (2012).
doi: 10.1074/mcp.M111.014050
Pech, M., Spreter, T., Beckmann, R. & Beatrix, B. Dual binding mode of the nascent polypeptide-associated complex reveals a novel universal adapter site on the ribosome. J. Biol. Chem. 285, 19679–19687 (2010).
pubmed: 20410297
pmcid: 2885246
doi: 10.1074/jbc.M109.092536
Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl. Acids Res. 33, W363–W367 (2005).
pubmed: 15980490
doi: 10.1093/nar/gki481
Galkin, V. E., Orlova, A., Cherepanova, O., Lebart, M. C. & Egelman, E. H. High-resolution cryo-EM structure of the F-actin-fimbrin/plastin ABD2 complex. Proc. Natl Acad. Sci. USA 105, 1494–1498 (2008).
pubmed: 18234857
doi: 10.1073/pnas.0708667105
Iwamoto, D. V. et al. Structural basis of the filamin A actin-binding domain interaction with F-actin. Nat. Struct. Mol. Biol. 25, 918–927 (2019).
doi: 10.1038/s41594-018-0128-3
Layer, R. W. The chemistry of imines. Chem. Rev. 63, 489–510 (1965).
doi: 10.1021/cr60225a003
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).
pubmed: 19377485
pmcid: 19377485
doi: 10.1038/nmeth.1322
Kalisman, N., Adams, C. M. & Levitt, M. Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc. Natl Acad. Sci. USA 109, 2884–2889 (2012).
pubmed: 22308438
doi: 10.1073/pnas.1119472109
Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).
pubmed: 15980461
pmcid: 1160169
doi: 10.1093/nar/gki408
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
pubmed: 30395289
pmcid: 30395289
doi: 10.1093/nar/gky1106
Kurokawa, H. L., Mikami, B. & Hirose, M. Crystal structure of diferric hen ovotransferrin at 2.4 Å resolution. J. Mol. Biol. 254, 196–207 (1995).
pubmed: 7490743
doi: 10.1006/jmbi.1995.0611
Natchiar, S. K., Myasnikov, A. G., Kratzat, H., Hazemann, I. & Klaholz, B. P. Visualization of chemical modifications in the human 80 s ribosome structure. Nature 551, 472–477 (2017).
pubmed: 29143818
doi: 10.1038/nature24482
Beatrix, B., Sakai, H. & Wiedmann, M. The α and β subunit of the nascent polypeptide-associated complex have distinct functions. J. Biol. Chem. 275, 37838–37845 (2000).
pubmed: 10982809
doi: 10.1074/jbc.M006368200
Kobayashi, R., Kubota, T. & Hidaka, H. Purification, characterization, and partial sequence analysis of a new 25-kDa actin binding protein from bovine aorta: a SM22 homolog. Biochem. Biophys. Res. Commun. 198, 1275–1280 (1994).
pubmed: 8117285
doi: 10.1006/bbrc.1994.1180
Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265–269 (1997).
pubmed: 9000076
doi: 10.1038/385265a0
Janji, B. et al. Phosphorylation on Ser5 increases the F-actin-binding activity of L-plastin and promotes its targeting to sites of actin assembly in cells. J. Cell Sci. 119, 1947–1960 (2006).
pubmed: 16636079
doi: 10.1242/jcs.02874
Huang, L., Wong, T. Y., Lin, R. C. & Furthmayr, H. Replacement of threonine 558, a critical site of phosphorylation of moesin in vivo, with aspartate activates F-actin binding of moesin. Regulation by conformational change. J. Biol. Chem. 274, 12803–12810 (1999).
pubmed: 10212266
doi: 10.1074/jbc.274.18.12803
Safer, D., Elzinga, M. & Nachmias, V. T. Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J. Biol. Chem. 266, 4029–4032 (1991).
pubmed: 1999398
Hein, M. Y. et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723 (2015).
pubmed: 26496610
doi: 10.1016/j.cell.2015.09.053
Soh, Y. M. et al. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol. Cell 57, 290–303 (2015).
pubmed: 25557547
pmcid: 4306524
doi: 10.1016/j.molcel.2014.11.023
Koegler, E. et al. p28, a novel ERGIC/cis Golgi protein, required for Golgi ribbon formation. Traffic 11, 70–89 (2010).
pubmed: 19948005
doi: 10.1111/j.1600-0854.2009.01009.x