Developing and evaluating risk prediction models with panel current status data.

current status data model misspecification risk prediction robustness single-index model

Journal

Biometrics
ISSN: 1541-0420
Titre abrégé: Biometrics
Pays: United States
ID NLM: 0370625

Informations de publication

Date de publication:
06 2021
Historique:
revised: 22 04 2020
received: 28 11 2018
accepted: 27 05 2020
pubmed: 21 6 2020
medline: 26 10 2021
entrez: 21 6 2020
Statut: ppublish

Résumé

Panel current status data arise frequently in biomedical studies when the occurrence of a particular clinical condition is only examined at several prescheduled visit times. Existing methods for analyzing current status data have largely focused on regression modeling based on commonly used survival models such as the proportional hazards model and the accelerated failure time model. However, these procedures have the limitations of being difficult to implement and performing sub-optimally in relatively small sample sizes. The performance of these procedures is also unclear under model misspecification. In addition, no methods currently exist to evaluate the prediction performance of estimated risk models with panel current status data. In this paper, we propose a simple estimator under a general class of nonparametric transformation (NPT) models by fitting a logistic regression working model and demonstrate that our proposed estimator is consistent for the NPT model parameter up to a scale multiplier. Furthermore, we propose nonparametric estimators for evaluating the prediction performance of the risk score derived from model fitting, which is valid regardless of the adequacy of the fitted model. Extensive simulation results suggest that our proposed estimators perform well in finite samples and the regression parameter estimators outperform existing estimators under various scenarios. We illustrate the proposed procedures using data from the Framingham Offspring Study.

Identifiants

pubmed: 32562264
doi: 10.1111/biom.13317
pmc: PMC8168594
mid: NIHMS1705675
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

599-609

Subventions

Organisme : NIAMS NIH HHS
ID : P30 AR072577
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL089778
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA236558
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA242940
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA009337
Pays : United States
Organisme : NCI NIH HHS
ID : U24 CA086368
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA086368
Pays : United States

Informations de copyright

© 2020 The International Biometric Society.

Références

Am J Epidemiol. 1979 Sep;110(3):281-90
pubmed: 474565
Biometrics. 2017 Dec;73(4):1169-1178
pubmed: 28294286
Stat Med. 1997 Jan 15-Feb 15;16(1-3):285-319
pubmed: 9004398
Biometrics. 2000 Jun;56(2):511-8
pubmed: 10877311
N Engl J Med. 2000 Mar 30;342(13):905-12
pubmed: 10738048
Stat Med. 2010 Apr 30;29(9):972-81
pubmed: 20069532
Stat Med. 2013 Nov 10;32(25):4452-66
pubmed: 23761135
BMJ. 2012 Sep 18;345:e5900
pubmed: 22990994
Biostatistics. 2012 Apr;13(2):256-73
pubmed: 22294672
JAMA. 2001 Jul 18;286(3):327-34
pubmed: 11466099
Lifetime Data Anal. 1998;4(1):29-50
pubmed: 9567054
Biostatistics. 2008 Apr;9(2):216-33
pubmed: 18056687
BMJ. 2011 Nov 28;343:d7163
pubmed: 22123912
Biometrics. 2011 Sep;67(3):1111-8
pubmed: 21175554
Diabetes. 2002 May;51(5):1596-600
pubmed: 11978661

Auteurs

Stephanie Chan (S)

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

Xuan Wang (X)

Department of Statistics, School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.

Ina Jazić (I)

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

Sarah Peskoe (S)

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

Yingye Zheng (Y)

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.

Tianxi Cai (T)

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

Articles similaires

Humans Meta-Analysis as Topic Sample Size Models, Statistical Computer Simulation
Humans Algorithms Software Artificial Intelligence Computer Simulation
Humans Robotic Surgical Procedures Clinical Competence Male Female
1.00
Humans Machine Learning Thyroid Diseases Logistic Models Male

Classifications MeSH