Accelerating Biphasic Biocatalysis through New Process Windows.
HPCCC
biocatalysis
biphasic reaction
phase-transfer catalysis
terpenoids
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
14 09 2020
14 09 2020
Historique:
received:
09
04
2020
pubmed:
23
6
2020
medline:
19
3
2021
entrez:
23
6
2020
Statut:
ppublish
Résumé
Process intensification through continuous flow reactions has increased the production rates of fine chemicals and pharmaceuticals. Catalytic reactions are accelerated through an unconventional and unprecedented use of a high-performance liquid/liquid counter current chromatography system. Product generation is significantly faster than in traditional batch reactors or in segmented flow systems, which is exemplified through stereoselective phase-transfer catalyzed reactions. This methodology also enables the intensification of biocatalysis as demonstrated in high yield esterifications and in the sesquiterpene cyclase-catalyzed synthesis of sesquiterpenes from farnesyl diphosphate as high-value natural products with applications in medicine, agriculture and the fragrance industry. Product release in sesquiterpene synthases is rate limiting due to the hydrophobic nature of sesquiterpenes, but a biphasic system exposed to centrifugal forces allows for highly efficient reactions.
Identifiants
pubmed: 32567753
doi: 10.1002/anie.202005183
pmc: PMC7540285
doi:
Substances chimiques
Polyisoprenyl Phosphates
0
Sesquiterpenes
0
farnesyl pyrophosphate
79W6B01D07
Carbon-Carbon Lyases
EC 4.1.-
trichodiene synthetase
EC 4.2.3.6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
16490-16495Informations de copyright
© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Références
J Biotechnol. 2017 Oct 10;259:182-190
pubmed: 28751275
Angew Chem Int Ed Engl. 2012 Nov 12;51(46):11491-5
pubmed: 23065776
J Am Chem Soc. 2017 Aug 23;139(33):11482-11492
pubmed: 28590723
Lab Chip. 2001 Sep;1(1):10-5
pubmed: 15100883
Chem Commun (Camb). 2003 Apr 21;(8):936-7
pubmed: 12744307
Angew Chem Int Ed Engl. 2018 Sep 3;57(36):11802-11806
pubmed: 29953712
J Chromatogr A. 2020 Jun 7;1620:460983
pubmed: 32098683
J Am Chem Soc. 2003 Apr 30;125(17):5139-51
pubmed: 12708866
Org Lett. 2005 Mar 17;7(6):1129-31
pubmed: 15760156
ACS Chem Biol. 2015 Jul 17;10(7):1729-36
pubmed: 25897591
Chempluschem. 2013 Nov;78(11):1334-1337
pubmed: 31986642
J Am Chem Soc. 2005 Jun 1;127(21):7834-42
pubmed: 15913373
Nature. 1966 Dec 3;212(5066):985-7
pubmed: 21090480
Biochemistry. 1997 Jul 8;36(27):8340-8
pubmed: 9204881
Int J Mol Sci. 2015 Dec 11;16(12):29682-716
pubmed: 26690428
Chembiochem. 2018 Sep 4;19(17):1834-1838
pubmed: 29802753
J Nat Prod. 2015 Jul 24;78(7):1765-96
pubmed: 26177360
J Am Chem Soc. 2018 Dec 12;140(49):16909-16913
pubmed: 30466258
Chem Commun (Camb). 2015 May 1;51(35):7550-3
pubmed: 25847629
Angew Chem Int Ed Engl. 2013 Apr 15;52(16):4312-48
pubmed: 23450630
Angew Chem Int Ed Engl. 2017 Apr 3;56(15):4347-4350
pubmed: 28294491
Phytochem Rev. 2014;13:547-572
pubmed: 24899873
Science. 2016 May 6;352(6286):691-4
pubmed: 27151864
Biochemistry. 1997 Jul 8;36(27):8332-9
pubmed: 9204880
J Org Chem. 2012 Jan 20;77(2):825-42
pubmed: 22229741
European J Org Chem. 2017 Jan 10;2017(2):414-418
pubmed: 28286413
Nat Prod Rep. 2012 Jan;29(1):60-71
pubmed: 22068697
J Liq Chromatogr Relat Technol. 2015;38(3):415-421
pubmed: 25580072
Nat Chem Biol. 2007 Jul;3(7):396-407
pubmed: 17576427