DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
22 06 2020
Historique:
received: 15 10 2019
accepted: 29 05 2020
entrez: 24 6 2020
pubmed: 24 6 2020
medline: 29 8 2020
Statut: epublish

Résumé

Efficient repair of DNA double-strand breaks (DSBs) requires a coordinated DNA Damage Response (DDR), which includes phosphorylation of histone H2Ax, forming γH2Ax. This histone modification spreads beyond the DSB into neighboring chromatin, generating a DDR platform that protects against end disassociation and degradation, minimizing chromosomal rearrangements. However, mechanisms that determine the breadth and intensity of γH2Ax domains remain unclear. Here, we show that chromosomal contacts of a DSB site are the primary determinants for γH2Ax landscapes. DSBs that disrupt a topological border permit extension of γH2Ax domains into both adjacent compartments. In contrast, DSBs near a border produce highly asymmetric DDR platforms, with γH2Ax nearly absent from one broken end. Collectively, our findings lend insights into a basic DNA repair mechanism and how the precise location of a DSB may influence genome integrity.

Identifiants

pubmed: 32572033
doi: 10.1038/s41467-020-16926-x
pii: 10.1038/s41467-020-16926-x
pmc: PMC7308414
doi:

Substances chimiques

Chromatin 0
H2AX protein, mouse 0
Histones 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3158

Subventions

Organisme : NCI NIH HHS
ID : R01 CA188286
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI118852
Pays : United States
Organisme : NIAID NIH HHS
ID : P01 AI106697
Pays : United States
Organisme : NIAID NIH HHS
ID : K08 AI102946
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA091842
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR000448
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002345
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI074953
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI130231
Pays : United States

Références

Tubbs, A., Nussenzweig, A. & Endogenous DNA damage as a source of genomic instability in cancer. Cell 168, 644–656 (2017).
pubmed: 28187286 pmcid: 6591730 doi: 10.1016/j.cell.2017.01.002
Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).
pubmed: 19847258 pmcid: 19847258 doi: 10.1038/nature08467
Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).
pubmed: 17525332 doi: 10.1126/science.1140321
Bonner, W. M. et al. H2AX and cancer. Nat. Rev. Cancer 8, 957–967 (2008).
pubmed: 19005492 pmcid: 3094856 doi: 10.1038/nrc2523
Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).
pubmed: 9488723 doi: 10.1074/jbc.273.10.5858
Scully, R. & Xie, A. Double strand break repair functions of histone H2AX. Mutat. Res. Fundam. Mol. Mech. Mutagen. 750, 5–14 (2013).
doi: 10.1016/j.mrfmmm.2013.07.007
Chen, B. R. et al. XLF and H2AX function in series to promote replication fork stability. J. Cell Biol. 218, 2113–2123 (2019).
pubmed: 31123184 pmcid: 6605786 doi: 10.1083/jcb.201808134
Helmink, B. A. et al. H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature 469, 245–249 (2011).
pubmed: 21160476 doi: 10.1038/nature09585
Xie, A. et al. Control of sister chromatid recombination by histone H2AX. Mol. Cell 16, 1017–1025 (2004).
pubmed: 15610743 doi: 10.1016/j.molcel.2004.12.007
Bassing, C. H. et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl Acad. Sci. USA 99, 8173–8178 (2002).
pubmed: 12034884 doi: 10.1073/pnas.122228699
Yin, B. et al. Histone H2AX stabilizes broken DNA strands to suppress chromosome breaks and translocations during V(D)J recombination. J. Exp. Med. 206, 2625–2639 (2009).
pubmed: 19887394 pmcid: 2806628 doi: 10.1084/jem.20091320
Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114, 359–370 (2003).
pubmed: 12914700 doi: 10.1016/S0092-8674(03)00566-X
Celeste, A. et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114, 371–383 (2003).
pubmed: 12914701 pmcid: 4737479 doi: 10.1016/S0092-8674(03)00567-1
Stucki, M. et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123, 1213–1226 (2005).
pubmed: 16377563 doi: 10.1016/j.cell.2005.09.038
Iacovoni, J. S. et al. High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 29, 1446–1457 (2010).
pubmed: 20360682 pmcid: 2868577 doi: 10.1038/emboj.2010.38
Clouaire, T. et al. Comprehensive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chromatin signatures. Mol. Cell 72, 250–262.e6 (2018).
pubmed: 30270107 pmcid: 6202423 doi: 10.1016/j.molcel.2018.08.020
Savic, V. et al. Formation of dynamic γ-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin. Mol. Cell 34, 298–310 (2009).
pubmed: 19450528 pmcid: 2744111 doi: 10.1016/j.molcel.2009.04.012
Natale, F. et al. Identification of the elementary structural units of the DNA damage response. Nat. Commun. 8, 15760 (2017).
pubmed: 28604675 pmcid: 5472794 doi: 10.1038/ncomms15760
Mojumdar, A. et al. Nej1 interacts with Mre11 to regulate tethering and Dna2 binding at DNA double-strand breaks. Cell Rep. 28, 1564–1573.e3 (2019).
pubmed: 31390569 pmcid: 6746346 doi: 10.1016/j.celrep.2019.07.018
Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-Dependent chromatin changes silence transcription in cis to dna double-strand breaks. Cell 141, 970–981 (2010).
pubmed: 20550933 pmcid: 2920610 doi: 10.1016/j.cell.2010.04.038
Purman, C. E. et al. Regional gene repression by DNA double-strand breaks in G 1 phase cells. Mol. Cell. Biol. 39, e00181-19 (2019).
Ochs, F. et al. Stabilization of chromatin topology safeguards genome integrity. Nature 574, 571–574 (2019).
pubmed: 31645724 doi: 10.1038/s41586-019-1659-4
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
pubmed: 3356448 pmcid: 3356448 doi: 10.1038/nature11082
Bredemeyer, A. L. et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442, 466–470 (2006).
pubmed: 16799570 doi: 10.1038/nature04866
Lee, B.-S. et al. Functional intersection of ATM and DNA-dependent protein kinase catalytic subunit in coding end joining during V(D)J recombination. Mol. Cell. Biol. 33, 3568–3579 (2013).
pubmed: 23836881 pmcid: 3753869 doi: 10.1128/MCB.00308-13
Strasser, A., Harris, A. W. & Cory, S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67, 889–899 (1991).
pubmed: 1959134 doi: 10.1016/0092-8674(91)90362-3
Rooney, S. et al. Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol. Cell 10, 1379–1390 (2002).
pubmed: 12504013 doi: 10.1016/S1097-2765(02)00755-4
Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).
doi: 10.1038/nprot.2018.015 pubmed: 29651053
Majumder, K. et al. Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element. J. Exp. Med. 212, 107–120 (2015).
pubmed: 25512470 pmcid: 4291525 doi: 10.1084/jem.20141479
Majumder, K. et al. Domain-specific and stage-intrinsic changes in Tcrb conformation during thymocyte development. J. Immunol. 195, 1262–1272 (2015).
pubmed: 26101321 pmcid: 4506872 doi: 10.4049/jimmunol.1500692
Schuijers, J. et al. Transcriptional dysregulation of MYC reveals common enhancer-docking mechanism. Cell Rep. 23, 349–360 (2018).
pubmed: 29641996 pmcid: 5929158 doi: 10.1016/j.celrep.2018.03.056
Bahr, C. et al. A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature 553, 515–520 (2018).
pubmed: 29342133 doi: 10.1038/nature25193
Lancho, O. & Herranz, D. The MYC enhancer-ome: long-range transcriptional regulation of MYC in cancer. Trends Cancer 4, 810–822 (2018).
pubmed: 30470303 pmcid: 6260942 doi: 10.1016/j.trecan.2018.10.003
Aymard, F. et al. Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat. Struct. Mol. Biol. 24, 353–361 (2017).
pubmed: 28263325 pmcid: 5385132 doi: 10.1038/nsmb.3387
Ramírez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).
pubmed: 29335486 pmcid: 5768762 doi: 10.1038/s41467-017-02525-w
Fernandez-Capetillo, O. et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell 4, 497–508 (2003).
pubmed: 12689589 doi: 10.1016/S1534-5807(03)00093-5
Kilic, S. et al. Phase separation of 53 BP 1 determines liquid‐like behavior of DNA repair compartments. EMBO J. 38, e101379 (2019).
Caron, P. et al. Non-redundant functions of ATM and DNA-PKcs in response to DNA double-strand breaks. Cell Rep. 13, 1598–1609 (2015).
pubmed: 26586426 pmcid: 4670905 doi: 10.1016/j.celrep.2015.10.024
Baldeyron, C., Soria, G., Roche, D., Cook, A. J. L. & Almouzni, G. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J. Cell Biol. 193, 81–95 (2011).
pubmed: 21464229 pmcid: 3082177 doi: 10.1083/jcb.201101030
Aymard, F. et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 21, 366–374 (2014).
pubmed: 24658350 pmcid: 24658350 doi: 10.1038/nsmb.2796
Rivera-Reyes, A., Hayer, K. E. & Bassing, C. H. Genomic alterations of non-coding regions underlie human cancer: lessons from T-ALL. Trends Mol. Med. 22, 1035–1046 (2016).
pubmed: 28240214 pmcid: 5330204 doi: 10.1016/j.molmed.2016.10.004
Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).
pubmed: 27210764 pmcid: 4889513 doi: 10.1016/j.celrep.2016.04.085
Zhang, X. et al. Fundamental roles of chromatin loop extrusion in antibody class switching. Nature 575, 385–389 (2019).
pubmed: 31666703 pmcid: 6856444 doi: 10.1038/s41586-019-1723-0
Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).
pubmed: 26940867 pmcid: 4884612 doi: 10.1126/science.aad9024
Akdemir, K. C. et al. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat. Genet. 52, 294–305 (2020).
pubmed: 32024999 pmcid: 7058537 doi: 10.1038/s41588-019-0564-y
Noordermeer, S. M. et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nature 560, 117–121 (2018).
pubmed: 30022168 pmcid: 6141009 doi: 10.1038/s41586-018-0340-7
Lottersberger, F., Bothmer, A., Robbiani, D. F., Nussenzweig, M. C. & de Lange, T. Role of 53BP1 oligomerization in regulating double-strand break repair. Proc. Natl Acad. Sci. USA 110, 2146–2151 (2013).
pubmed: 23345425 doi: 10.1073/pnas.1222617110
Gothe, H. J. et al. Spatial chromosome folding and active transcription drive DNA fragility and formation of oncogenic MLL translocations. Mol. Cell 75, 267–283.e12 (2019).
pubmed: 31202576 doi: 10.1016/j.molcel.2019.05.015
Canela, A. et al. Topoisomerase II-induced chromosome breakage and translocation is determined by chromosome architecture and transcriptional activity. Mol. Cell 75, 252–266.e8 (2019).
pubmed: 31202577 doi: 10.1016/j.molcel.2019.04.030
Bednarski, J. J. et al. RAG-induced DNA double-strand breaks signal through Pim2 to promote pre-B cell survival and limit proliferation. J. Exp. Med. 209, 11–17 (2012).
pubmed: 22201128 pmcid: 3260864 doi: 10.1084/jem.20112078
Mombaerts, P., Terhorst, C., Jacks, T., Tonegawa, S. & Sancho, J. Characterization of immature thymocyte lines derived from T-cell receptor or recombination activating gene 1 and p53 double mutant mice. Proc. Natl Acad. Sci. USA 92, 7420–7424 (1995).
pubmed: 7638208 doi: 10.1073/pnas.92.16.7420
Chicaybam, L. et al. An efficient electroporation protocol for the genetic modification of mammalian cells. Front. Bioeng. Biotechnol. 4, 99 (2016).
pubmed: 28168187
Cella, M. et al. Subsets of ILC3-ILC1-like cells generate a diversity spectrum of innate lymphoid cells in human mucosal tissues. Nat. Immunol. 20, 980–991 (2019).
pubmed: 31209406 pmcid: 6685551 doi: 10.1038/s41590-019-0425-y
Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
pubmed: 5635824 pmcid: 5635824 doi: 10.1016/j.cell.2014.11.021
Koues, O. I. et al. Distinct gene regulatory pathways for human innate versus adaptive lymphoid cells. Cell 165, 1134–1146 (2016).
pubmed: 27156452 pmcid: 4874868 doi: 10.1016/j.cell.2016.04.014
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).
pubmed: 27079975 pmcid: 4987876 doi: 10.1093/nar/gkw257
Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).
pubmed: 5596920 pmcid: 5596920 doi: 10.1016/j.cels.2015.07.012
Stansfield, J. C., Cresswell, K. G., Vladimirov, V. I. & Dozmorov, M. G. HiCcompare: an R-package for joint normalization and comparison of HI-C datasets. BMC Bioinforma. 19, 279 (2018).
doi: 10.1186/s12859-018-2288-x

Auteurs

Patrick L Collins (PL)

Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.

Caitlin Purman (C)

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Sofia I Porter (SI)

Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.

Vincent Nganga (V)

Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.

Ankita Saini (A)

Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.

Katharina E Hayer (KE)

Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.

Greer L Gurewitz (GL)

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Barry P Sleckman (BP)

Department of Medicine, Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.

Jeffrey J Bednarski (JJ)

Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Craig H Bassing (CH)

Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Eugene M Oltz (EM)

Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA. Eugene.Oltz@osumc.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH