863 genomes reveal the origin and domestication of chicken.


Journal

Cell research
ISSN: 1748-7838
Titre abrégé: Cell Res
Pays: England
ID NLM: 9425763

Informations de publication

Date de publication:
08 2020
Historique:
received: 15 12 2019
accepted: 20 05 2020
pubmed: 26 6 2020
medline: 1 10 2021
entrez: 26 6 2020
Statut: ppublish

Résumé

Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.

Identifiants

pubmed: 32581344
doi: 10.1038/s41422-020-0349-y
pii: 10.1038/s41422-020-0349-y
pmc: PMC7395088
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

693-701

Commentaires et corrections

Type : ErratumIn

Références

Lawler, A. Why did the chicken cross the world? Atria Books, New York (2014).
Larson, G. & Fuller, D. Q. The evolution of animal domestication. Annu. Rev. Ecol. Evol. Syst. 45, 115–136 (2014).
doi: 10.1146/annurev-ecolsys-110512-135813
Peters, J. et al. Questioning new answers regarding Holocene chicken domestication in China. Proc. Natl Acad. Sci. USA 112, E2415 (2015).
pubmed: 25886773 pmcid: 4434763
Tixier-Boichard, M., Bed’hom, B. & Rognon, X. Chicken domestication: from archeology to genomics. C. R. Biol. 334, 197–204 (2011).
pubmed: 21377614 doi: 10.1016/j.crvi.2010.12.012
Miao, Y. W. et al. Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity 110, 277–282 (2013).
pubmed: 23211792 doi: 10.1038/hdy.2012.83
Liu, Y. P. et al. Multiple maternal origins of chickens: out of the Asian jungles. Mol. Phylogenet. Evol. 38, 12–19 (2006).
pubmed: 16275023 doi: 10.1016/j.ympev.2005.09.014
Fumihito, A. et al. Monophyletic origin and unique dispersal patterns of domestic fowls. Proc. Natl Acad. Sci. USA 93, 6792–6795 (1996).
pubmed: 8692897 doi: 10.1073/pnas.93.13.6792 pmcid: 39106
Lawler, A. Animal domestication. In search of the wild chicken. Science 338, 1020–1024 (2012).
pubmed: 23180839 doi: 10.1126/science.338.6110.1020
Peters, J., Lebrasseur, O., Deng, H. & Larson, G. Holocene cultural history of red jungle fowl (Gallus gallus) and its domestic descendant in East Asia. Quat. Sci. Rev. 142, 102–119 (2016).
doi: 10.1016/j.quascirev.2016.04.004
Eda, M. et al. Reevaluation of early Holocene chicken domestication in northern China. J. Archaeol. Sci. 67, 25–31 (2016).
doi: 10.1016/j.jas.2016.01.012
Girdland Flink, L. et al. Establishing the validity of domestication genes using DNA from ancient chickens. Proc. Natl Acad. Sci. USA 111, 6184–6189 (2014).
pubmed: 24753608 doi: 10.1073/pnas.1308939110 pmcid: 4035994
Wang, G. D., Xie, H. B., Peng, M. S., Irwin, D. & Zhang, Y. P. Domestication genomics: evidence from animals. Annu. Rev. Anim. Biosci. 2, 65–84 (2014).
pubmed: 25384135 doi: 10.1146/annurev-animal-022513-114129
Larson, G. & Burger, J. A population genetics view of animal domestication. Trends Genet. 29, 197–205 (2013).
pubmed: 23415592 doi: 10.1016/j.tig.2013.01.003
Wang, G. D. et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 26, 21–33 (2016).
pubmed: 26667385 doi: 10.1038/cr.2015.147
Ní Leathlobhair, M. et al. The evolutionary history of dogs in the Americas. Science 361, 81–85 (2018).
pubmed: 29976825 doi: 10.1126/science.aao4776
Frantz, L. A. et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 1228–1231 (2016).
pubmed: 27257259 doi: 10.1126/science.aaf3161
Chen, N. et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat. Commun. 9, 2337 (2018).
pubmed: 29904051 pmcid: 6002414 doi: 10.1038/s41467-018-04737-0
Fages, A. et al. Tracking five millennia of horse management with extensive ancient genome time series. Cell 177, 1419–1435 (2019).
pubmed: 31056281 pmcid: 6547883 doi: 10.1016/j.cell.2019.03.049
Flowers, J. M. et al. Cross-species hybridization and the origin of North African date palms. Proc. Natl Acad. Sci. USA 116, 1651–1658 (2019).
pubmed: 30642962 doi: 10.1073/pnas.1817453116 pmcid: 6358688
Li, D. et al. Population genomics identifies patterns of genetic diversity and selection in chicken. BMC Genom. 20, 263 (2019).
doi: 10.1186/s12864-019-5622-4
Rubin, C. J. et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587–591 (2010).
pubmed: 20220755 doi: 10.1038/nature08832
Wang, M. S. et al. An evolutionary genomic perspective on the breeding of dwarf chickens. Mol. Biol. Evol. 34, 3081–3088 (2017).
pubmed: 28961939 doi: 10.1093/molbev/msx227
Guo, Y. et al. A complex structural variation on chromosome 27 leads to the ectopic expression of HOXB8 and the Muffs and beard phenotype in chickens. PLoS Genet. 12, e1006071 (2016).
pubmed: 27253709 pmcid: 4890787 doi: 10.1371/journal.pgen.1006071
Wang, M. S. et al. Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication. Cell Res. 26, 556–573 (2016).
pubmed: 27033669 pmcid: 4856766 doi: 10.1038/cr.2016.44
Guo, X. et al. Whole-genome resequencing of Xishuangbanna fighting chicken to identify signatures of selection. Genet. Sel. Evol. 48, 62 (2016).
pubmed: 27565441 pmcid: 5000499 doi: 10.1186/s12711-016-0239-4
Wang, M. S. et al. Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens. Mol. Biol. Evol. 32, 1880–1889 (2015).
pubmed: 25788450 doi: 10.1093/molbev/msv071
Wang, M. S. et al. Comparative population genomics reveals genetic basis underlying body size of domestic chickens. J. Mol. Cell. Biol. 8, 542–552 (2016).
pubmed: 27744377 doi: 10.1093/jmcb/mjw044
Yi, G. et al. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing. BMC Genom. 15, 962 (2014).
doi: 10.1186/1471-2164-15-962
Fan, W. L. et al. Genome-wide patterns of genetic variation in two domestic chickens. Genome Biol. Evol. 5, 1376–1392 (2013).
pubmed: 23814129 pmcid: 3730349 doi: 10.1093/gbe/evt097
Huang, X. H. et al. Was chicken domesticated in northern China? New evidence from mitochondrial genomes. Sci. Bull. 63, 743–746 (2018).
doi: 10.1016/j.scib.2017.12.004
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
pubmed: 19648217 pmcid: 2752134 doi: 10.1101/gr.094052.109
Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).
pubmed: 23166502 pmcid: 3499260 doi: 10.1371/journal.pgen.1002967
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
pubmed: 22960212 pmcid: 3522152 doi: 10.1534/genetics.112.145037
Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).
pubmed: 24952747 pmcid: 4116295 doi: 10.1038/ng.3015
Nam, K. et al. Molecular evolution of genes in avian genomes. Genome Biol. 11, R68 (2010).
pubmed: 20573239 pmcid: 2911116 doi: 10.1186/gb-2010-11-6-r68
Collias, N. E. & Saichuae, P. Ecology of the red jungle fowl in Thailand and Malaya with reference to the origin of domestication. Nat. Hist. Bull. Siam. Soc. 22, 189–209 (1967).
Xiang, H. et al. Early Holocene chicken domestication in northern China. Proc. Natl Acad. Sci. USA 111, 17564–17569 (2014).
pubmed: 25422439 doi: 10.1073/pnas.1411882111 pmcid: 4267363
West, B. & Zhou, B. X. Did chickens go North? New evidence for domestication. J. Archaeol. Sci. 15, 515–533 (1988).
doi: 10.1016/0305-4403(88)90080-5
Brisbin, A. et al. PCAdmix: principal components-based assignment of ancestry along each chromosome in individuals with admixed ancestry from two or more populations. Hum. Biol. 84, 343–364 (2012).
pubmed: 23249312 pmcid: 3740525 doi: 10.3378/027.084.0401
Excoffier, L., Dupanloup, I., Huerta-Sanchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).
pubmed: 24204310 pmcid: 3812088 doi: 10.1371/journal.pgen.1003905
Eriksson, J. et al. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet. 4, e1000010 (2008).
pubmed: 18454198 pmcid: 2265484 doi: 10.1371/journal.pgen.1000010
Lawal, R. A. et al. The wild species genome ancestry of domestic chickens. BMC Biol. 18, 13 (2020).
pubmed: 32050971 pmcid: 7014787 doi: 10.1186/s12915-020-0738-1
Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).
pubmed: 26748515 pmcid: 4716681 doi: 10.1016/j.ajhg.2015.11.020
Bosse, M. et al. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nat. Commun. 5, 4392 (2014).
pubmed: 25025832 doi: 10.1038/ncomms5392
Shriver, M. D. et al. The genomic distribution of population substructure in four populations using 8,525 autosomal SNPs. Hum. Genom. 1, 274–286 (2004).
doi: 10.1186/1479-7364-1-4-274
Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl Acad. Sci. USA 76, 5269–5273 (1979).
pubmed: 291943 doi: 10.1073/pnas.76.10.5269 pmcid: 413122
Librado, P. et al. Ancient genomic changes associated with domestication of the horse. Science 356, 442–445 (2017).
pubmed: 28450643 doi: 10.1126/science.aam5298
Rohner, N. et al. Duplication of fgfr1 permits Fgf signaling to serve as a target for selection during domestication. Curr. Biol. 19, 1642–1647 (2009).
pubmed: 19733072 doi: 10.1016/j.cub.2009.07.065
Atikuzzaman, M. et al. Selection for higher fertility reflects in the seminal fluid proteome of modern domestic chicken. Comp. Biochem. Physiol. Part D Genom. Proteom. 21, 27–40 (2017).
Schutz, K. E. et al. Major growth QTLs in fowl are related to fearful behavior: possible genetic links between fear responses and production traits in a red junglefowl x White Leghorn intercross. Behav. Genet. 34, 121–130 (2004).
pubmed: 14739702 doi: 10.1023/B:BEGE.0000009481.98336.fc
Schutz, K. et al. QTL analysis of a red junglefowl x White Leghorn intercross reveals trade-off in resource allocation between behavior and production traits. Behav. Genet. 32, 423–433 (2002).
pubmed: 12467340 doi: 10.1023/A:1020880211144
Bédécarrats, Y. G., Shimizu, M. & Guémené, D. Gonadotropin releasing hormones and their receptors in avian species. J. Poult. Sci. 43, 199–214 (2006).
doi: 10.2141/jpsa.43.199
Sharp, P. J. et al. Physiological roles of chicken LHRH-I and -II in the control of gonadotrophin release in the domestic chicken. J. Endocrinol. 124, 291–299 (1990).
pubmed: 2179458 doi: 10.1677/joe.0.1240291
Marques, P. et al. Physiology of GNRH and gonadotropin secretion. MDText.com, Inc. South Dartmouth, Massachusetts (2000).
Gandhi, R. et al. The Drosophila kinesin-like protein KLP67A is essential for mitotic and male meiotic spindle assembly. Mol. Biol. Cell 15, 121–131 (2004).
pubmed: 13679514 pmcid: 307533 doi: 10.1091/mbc.e03-05-0342
Liu, X. S. et al. Germinal cell aplasia in Kif18a mutant male mice due to impaired chromosome congression and dysregulated BubR1 and CENP-E. Genes Cancer 1, 26–39 (2010).
pubmed: 20981276 pmcid: 2963078 doi: 10.1177/1947601909358184
Loog, L. et al. Inferring allele frequency trajectories from ancient DNA indicates that selection on a chicken gene coincided with changes in medieval husbandry practices. Mol. Biol. Evol. 34, 1981–1990 (2017).
pubmed: 28444234 pmcid: 5850110 doi: 10.1093/molbev/msx142
Qanbari, S. et al. Genetics of adaptation in modern chicken. PLoS Genet. 15, e1007989 (2019).
pubmed: 31034467 pmcid: 6508745 doi: 10.1371/journal.pgen.1007989
Ye, W. et al. Early middle Holocene climate oscillations recorded in the Beihuqiao Core, Yuhang, Zhejiang Province, China. J. Paleolimnol. 59, 263–278 (2017).
doi: 10.1007/s10933-017-9959-x
Wu, M. S. et al. Holocene hydrological and sea surface temperature changes in the northern coast of the South China Sea. J. Asian Earth Sci. 135, 268–280 (2017).
doi: 10.1016/j.jseaes.2017.01.004
Fan, Z. et al. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res. 26, 163–173 (2016).
pubmed: 26680994 pmcid: 4728369 doi: 10.1101/gr.197517.115
Wurster, C. M. et al. Forest contraction in north equatorial Southeast Asia during the Last Glacial Period. Proc. Natl Acad. Sci. USA 107, 15508–15511 (2010).
pubmed: 20660748 doi: 10.1073/pnas.1005507107 pmcid: 2932586
Mellars, P. Going east: new genetic and archaeological perspectives on the modern human colonization of Eurasia. Science 313, 796–800 (2006).
pubmed: 16902130 doi: 10.1126/science.1128402
Fumihito, A. et al. One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc. Natl Acad. Sci. USA 91, 12505–12509 (1994).
pubmed: 7809067 doi: 10.1073/pnas.91.26.12505 pmcid: 45467
Alberto, F. J. et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 9, 813 (2018).
pubmed: 29511174 pmcid: 5840369 doi: 10.1038/s41467-018-03206-y
Naval-Sanchez, M. et al. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nat. Commun. 9, 859 (2018).
pubmed: 29491421 pmcid: 5830443 doi: 10.1038/s41467-017-02809-1
Wang, G. D. et al. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat. Commun. 4, 1860 (2013).
pubmed: 23673645 doi: 10.1038/ncomms2814
Daly, K. G. et al. Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science 361, 85–88 (2018).
pubmed: 29976826 doi: 10.1126/science.aas9411
Schubert, M. et al. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc. Natl Acad. Sci. USA 111, E5661–E5669 (2014).
pubmed: 25512547 pmcid: 4284583
Kong, Y. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98, 152–153 (2011).
pubmed: 21651976 doi: 10.1016/j.ygeno.2011.05.009
Li, H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 30, 2843–2851 (2014).
pubmed: 24974202 pmcid: 4271055 doi: 10.1093/bioinformatics/btu356
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).
pubmed: 19377059 pmcid: 2693737 doi: 10.1093/molbev/msp077
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468 pmcid: 3014363 doi: 10.1016/j.ajhg.2010.11.011
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
pubmed: 17194218 pmcid: 1713260 doi: 10.1371/journal.pgen.0020190
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
pubmed: 25684545 pmcid: 4534335 doi: 10.1111/1755-0998.12387
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852 pmcid: 4342193 doi: 10.1186/s13742-015-0047-8
Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009).
pubmed: 19851460 pmcid: 2760211 doi: 10.1371/journal.pgen.1000695
Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009).
pubmed: 19779445 pmcid: 2842210 doi: 10.1038/nature08365
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
pubmed: 27004904 doi: 10.1093/molbev/msw054 pmcid: 8210823
McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).
pubmed: 27268795 pmcid: 4893825 doi: 10.1186/s13059-016-0974-4
Reimand, J., Arak, T. & Vilo, J. g:Profiler-a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res. 39, W307–W315 (2011).
pubmed: 21646343 pmcid: 3125778 doi: 10.1093/nar/gkr378

Auteurs

Ming-Shan Wang (MS)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
Department of Ecology and Evolutionary Biology, Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.

Mukesh Thakur (M)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Zoological Survey of India, New Alipore, Kolkata, West Bengal, India.

Min-Sheng Peng (MS)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China.

Yu Jiang (Y)

Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.

Laurent Alain François Frantz (LAF)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.

Ming Li (M)

Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.

Jin-Jin Zhang (JJ)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.

Sheng Wang (S)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.

Joris Peters (J)

ArchaeoBioCenter and Department of Veterinary Sciences, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, LMU Munich, Munich, Germany.
SNSB, Bavarian State Collection of Anthropology and Palaeoanatomy, Munich, Germany.

Newton Otieno Otecko (NO)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.

Chatmongkon Suwannapoom (C)

School of Agriculture and Natural Resources, University of Phayao, Phayao, Thailand.

Xing Guo (X)

College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.

Zhu-Qing Zheng (ZQ)

Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.

Ali Esmailizadeh (A)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran.

Nalini Yasoda Hirimuthugoda (NY)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka.

Hidayat Ashari (H)

Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia.
CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.

Sri Suladari (S)

Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia.

Moch Syamsul Arifin Zein (MSA)

Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia.

Szilvia Kusza (S)

Institute of Animal Husbandry, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary.

Saeed Sohrabi (S)

Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran.

Hamed Kharrati-Koopaee (H)

Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran.
Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran.

Quan-Kuan Shen (QK)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.

Lin Zeng (L)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.

Min-Min Yang (MM)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.

Ya-Jiang Wu (YJ)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, Yunnan, China.

Xing-Yan Yang (XY)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, Yunnan, China.

Xue-Mei Lu (XM)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China.

Xin-Zheng Jia (XZ)

Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya.
Department of Animal Science, Iowa State University, Ames, IA, USA.

Qing-Hua Nie (QH)

College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.

Susan Joy Lamont (SJ)

Department of Animal Science, Iowa State University, Ames, IA, USA.

Emiliano Lasagna (E)

Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, Perugia, Italy.

Simone Ceccobelli (S)

Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, Perugia, Italy.

Humpita Gamaralalage Thilini Nisanka Gunwardana (HGTN)

Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka.

Thilina Madusanka Senasige (TM)

Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka.

Shao-Hong Feng (SH)

BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China.

Jing-Fang Si (JF)

Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.

Hao Zhang (H)

Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.

Jie-Qiong Jin (JQ)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (CAS-SEABRI), Yezin, Myanmar.

Ming-Li Li (ML)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.

Yan-Hu Liu (YH)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.

Hong-Man Chen (HM)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.

Cheng Ma (C)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.

Shan-Shan Dai (SS)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.

Abul Kashem Fazlul Haque Bhuiyan (AKFH)

Bangladesh Agricultural University, Mymennsingh, Bangladesh.

Muhammad Sajjad Khan (MS)

University of Agriculture Faisalabad, Faisalabad, Pakistan.

Gamamada Liyanage Lalanie Pradeepa Silva (GLLP)

Department of Animal Science, University of Peradeniya, Peradeniya, Sri Lanka.

Thi-Thuy Le (TT)

National Institute of Animal Husbandry, Hanoi, Vietnam.

Okeyo Ally Mwai (OA)

Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya.

Mohamed Nawaz Mohamed Ibrahim (MNM)

Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya.

Megan Supple (M)

Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.

Beth Shapiro (B)

Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.
Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.

Olivier Hanotte (O)

Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK.
Livestock Genetics Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia.

Guojie Zhang (G)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China.
Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark.
China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China.

Greger Larson (G)

The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.

Jian-Lin Han (JL)

CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China. h.jianlin@cgiar.org.
Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya. h.jianlin@cgiar.org.

Dong-Dong Wu (DD)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. wudongdong@mail.kiz.ac.cn.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. wudongdong@mail.kiz.ac.cn.
Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China. wudongdong@mail.kiz.ac.cn.

Ya-Ping Zhang (YP)

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. zhangyp@mail.kiz.ac.cn.
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. zhangyp@mail.kiz.ac.cn.
Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China. zhangyp@mail.kiz.ac.cn.
State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, Yunnan, China. zhangyp@mail.kiz.ac.cn.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH