863 genomes reveal the origin and domestication of chicken.
Journal
Cell research
ISSN: 1748-7838
Titre abrégé: Cell Res
Pays: England
ID NLM: 9425763
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
15
12
2019
accepted:
20
05
2020
pubmed:
26
6
2020
medline:
1
10
2021
entrez:
26
6
2020
Statut:
ppublish
Résumé
Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.
Identifiants
pubmed: 32581344
doi: 10.1038/s41422-020-0349-y
pii: 10.1038/s41422-020-0349-y
pmc: PMC7395088
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
693-701Commentaires et corrections
Type : ErratumIn
Références
Lawler, A. Why did the chicken cross the world? Atria Books, New York (2014).
Larson, G. & Fuller, D. Q. The evolution of animal domestication. Annu. Rev. Ecol. Evol. Syst. 45, 115–136 (2014).
doi: 10.1146/annurev-ecolsys-110512-135813
Peters, J. et al. Questioning new answers regarding Holocene chicken domestication in China. Proc. Natl Acad. Sci. USA 112, E2415 (2015).
pubmed: 25886773
pmcid: 4434763
Tixier-Boichard, M., Bed’hom, B. & Rognon, X. Chicken domestication: from archeology to genomics. C. R. Biol. 334, 197–204 (2011).
pubmed: 21377614
doi: 10.1016/j.crvi.2010.12.012
Miao, Y. W. et al. Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity 110, 277–282 (2013).
pubmed: 23211792
doi: 10.1038/hdy.2012.83
Liu, Y. P. et al. Multiple maternal origins of chickens: out of the Asian jungles. Mol. Phylogenet. Evol. 38, 12–19 (2006).
pubmed: 16275023
doi: 10.1016/j.ympev.2005.09.014
Fumihito, A. et al. Monophyletic origin and unique dispersal patterns of domestic fowls. Proc. Natl Acad. Sci. USA 93, 6792–6795 (1996).
pubmed: 8692897
doi: 10.1073/pnas.93.13.6792
pmcid: 39106
Lawler, A. Animal domestication. In search of the wild chicken. Science 338, 1020–1024 (2012).
pubmed: 23180839
doi: 10.1126/science.338.6110.1020
Peters, J., Lebrasseur, O., Deng, H. & Larson, G. Holocene cultural history of red jungle fowl (Gallus gallus) and its domestic descendant in East Asia. Quat. Sci. Rev. 142, 102–119 (2016).
doi: 10.1016/j.quascirev.2016.04.004
Eda, M. et al. Reevaluation of early Holocene chicken domestication in northern China. J. Archaeol. Sci. 67, 25–31 (2016).
doi: 10.1016/j.jas.2016.01.012
Girdland Flink, L. et al. Establishing the validity of domestication genes using DNA from ancient chickens. Proc. Natl Acad. Sci. USA 111, 6184–6189 (2014).
pubmed: 24753608
doi: 10.1073/pnas.1308939110
pmcid: 4035994
Wang, G. D., Xie, H. B., Peng, M. S., Irwin, D. & Zhang, Y. P. Domestication genomics: evidence from animals. Annu. Rev. Anim. Biosci. 2, 65–84 (2014).
pubmed: 25384135
doi: 10.1146/annurev-animal-022513-114129
Larson, G. & Burger, J. A population genetics view of animal domestication. Trends Genet. 29, 197–205 (2013).
pubmed: 23415592
doi: 10.1016/j.tig.2013.01.003
Wang, G. D. et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 26, 21–33 (2016).
pubmed: 26667385
doi: 10.1038/cr.2015.147
Ní Leathlobhair, M. et al. The evolutionary history of dogs in the Americas. Science 361, 81–85 (2018).
pubmed: 29976825
doi: 10.1126/science.aao4776
Frantz, L. A. et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 1228–1231 (2016).
pubmed: 27257259
doi: 10.1126/science.aaf3161
Chen, N. et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat. Commun. 9, 2337 (2018).
pubmed: 29904051
pmcid: 6002414
doi: 10.1038/s41467-018-04737-0
Fages, A. et al. Tracking five millennia of horse management with extensive ancient genome time series. Cell 177, 1419–1435 (2019).
pubmed: 31056281
pmcid: 6547883
doi: 10.1016/j.cell.2019.03.049
Flowers, J. M. et al. Cross-species hybridization and the origin of North African date palms. Proc. Natl Acad. Sci. USA 116, 1651–1658 (2019).
pubmed: 30642962
doi: 10.1073/pnas.1817453116
pmcid: 6358688
Li, D. et al. Population genomics identifies patterns of genetic diversity and selection in chicken. BMC Genom. 20, 263 (2019).
doi: 10.1186/s12864-019-5622-4
Rubin, C. J. et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587–591 (2010).
pubmed: 20220755
doi: 10.1038/nature08832
Wang, M. S. et al. An evolutionary genomic perspective on the breeding of dwarf chickens. Mol. Biol. Evol. 34, 3081–3088 (2017).
pubmed: 28961939
doi: 10.1093/molbev/msx227
Guo, Y. et al. A complex structural variation on chromosome 27 leads to the ectopic expression of HOXB8 and the Muffs and beard phenotype in chickens. PLoS Genet. 12, e1006071 (2016).
pubmed: 27253709
pmcid: 4890787
doi: 10.1371/journal.pgen.1006071
Wang, M. S. et al. Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication. Cell Res. 26, 556–573 (2016).
pubmed: 27033669
pmcid: 4856766
doi: 10.1038/cr.2016.44
Guo, X. et al. Whole-genome resequencing of Xishuangbanna fighting chicken to identify signatures of selection. Genet. Sel. Evol. 48, 62 (2016).
pubmed: 27565441
pmcid: 5000499
doi: 10.1186/s12711-016-0239-4
Wang, M. S. et al. Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens. Mol. Biol. Evol. 32, 1880–1889 (2015).
pubmed: 25788450
doi: 10.1093/molbev/msv071
Wang, M. S. et al. Comparative population genomics reveals genetic basis underlying body size of domestic chickens. J. Mol. Cell. Biol. 8, 542–552 (2016).
pubmed: 27744377
doi: 10.1093/jmcb/mjw044
Yi, G. et al. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing. BMC Genom. 15, 962 (2014).
doi: 10.1186/1471-2164-15-962
Fan, W. L. et al. Genome-wide patterns of genetic variation in two domestic chickens. Genome Biol. Evol. 5, 1376–1392 (2013).
pubmed: 23814129
pmcid: 3730349
doi: 10.1093/gbe/evt097
Huang, X. H. et al. Was chicken domesticated in northern China? New evidence from mitochondrial genomes. Sci. Bull. 63, 743–746 (2018).
doi: 10.1016/j.scib.2017.12.004
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
pubmed: 19648217
pmcid: 2752134
doi: 10.1101/gr.094052.109
Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).
pubmed: 23166502
pmcid: 3499260
doi: 10.1371/journal.pgen.1002967
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
pubmed: 22960212
pmcid: 3522152
doi: 10.1534/genetics.112.145037
Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).
pubmed: 24952747
pmcid: 4116295
doi: 10.1038/ng.3015
Nam, K. et al. Molecular evolution of genes in avian genomes. Genome Biol. 11, R68 (2010).
pubmed: 20573239
pmcid: 2911116
doi: 10.1186/gb-2010-11-6-r68
Collias, N. E. & Saichuae, P. Ecology of the red jungle fowl in Thailand and Malaya with reference to the origin of domestication. Nat. Hist. Bull. Siam. Soc. 22, 189–209 (1967).
Xiang, H. et al. Early Holocene chicken domestication in northern China. Proc. Natl Acad. Sci. USA 111, 17564–17569 (2014).
pubmed: 25422439
doi: 10.1073/pnas.1411882111
pmcid: 4267363
West, B. & Zhou, B. X. Did chickens go North? New evidence for domestication. J. Archaeol. Sci. 15, 515–533 (1988).
doi: 10.1016/0305-4403(88)90080-5
Brisbin, A. et al. PCAdmix: principal components-based assignment of ancestry along each chromosome in individuals with admixed ancestry from two or more populations. Hum. Biol. 84, 343–364 (2012).
pubmed: 23249312
pmcid: 3740525
doi: 10.3378/027.084.0401
Excoffier, L., Dupanloup, I., Huerta-Sanchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).
pubmed: 24204310
pmcid: 3812088
doi: 10.1371/journal.pgen.1003905
Eriksson, J. et al. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet. 4, e1000010 (2008).
pubmed: 18454198
pmcid: 2265484
doi: 10.1371/journal.pgen.1000010
Lawal, R. A. et al. The wild species genome ancestry of domestic chickens. BMC Biol. 18, 13 (2020).
pubmed: 32050971
pmcid: 7014787
doi: 10.1186/s12915-020-0738-1
Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).
pubmed: 26748515
pmcid: 4716681
doi: 10.1016/j.ajhg.2015.11.020
Bosse, M. et al. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nat. Commun. 5, 4392 (2014).
pubmed: 25025832
doi: 10.1038/ncomms5392
Shriver, M. D. et al. The genomic distribution of population substructure in four populations using 8,525 autosomal SNPs. Hum. Genom. 1, 274–286 (2004).
doi: 10.1186/1479-7364-1-4-274
Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl Acad. Sci. USA 76, 5269–5273 (1979).
pubmed: 291943
doi: 10.1073/pnas.76.10.5269
pmcid: 413122
Librado, P. et al. Ancient genomic changes associated with domestication of the horse. Science 356, 442–445 (2017).
pubmed: 28450643
doi: 10.1126/science.aam5298
Rohner, N. et al. Duplication of fgfr1 permits Fgf signaling to serve as a target for selection during domestication. Curr. Biol. 19, 1642–1647 (2009).
pubmed: 19733072
doi: 10.1016/j.cub.2009.07.065
Atikuzzaman, M. et al. Selection for higher fertility reflects in the seminal fluid proteome of modern domestic chicken. Comp. Biochem. Physiol. Part D Genom. Proteom. 21, 27–40 (2017).
Schutz, K. E. et al. Major growth QTLs in fowl are related to fearful behavior: possible genetic links between fear responses and production traits in a red junglefowl x White Leghorn intercross. Behav. Genet. 34, 121–130 (2004).
pubmed: 14739702
doi: 10.1023/B:BEGE.0000009481.98336.fc
Schutz, K. et al. QTL analysis of a red junglefowl x White Leghorn intercross reveals trade-off in resource allocation between behavior and production traits. Behav. Genet. 32, 423–433 (2002).
pubmed: 12467340
doi: 10.1023/A:1020880211144
Bédécarrats, Y. G., Shimizu, M. & Guémené, D. Gonadotropin releasing hormones and their receptors in avian species. J. Poult. Sci. 43, 199–214 (2006).
doi: 10.2141/jpsa.43.199
Sharp, P. J. et al. Physiological roles of chicken LHRH-I and -II in the control of gonadotrophin release in the domestic chicken. J. Endocrinol. 124, 291–299 (1990).
pubmed: 2179458
doi: 10.1677/joe.0.1240291
Marques, P. et al. Physiology of GNRH and gonadotropin secretion. MDText.com, Inc. South Dartmouth, Massachusetts (2000).
Gandhi, R. et al. The Drosophila kinesin-like protein KLP67A is essential for mitotic and male meiotic spindle assembly. Mol. Biol. Cell 15, 121–131 (2004).
pubmed: 13679514
pmcid: 307533
doi: 10.1091/mbc.e03-05-0342
Liu, X. S. et al. Germinal cell aplasia in Kif18a mutant male mice due to impaired chromosome congression and dysregulated BubR1 and CENP-E. Genes Cancer 1, 26–39 (2010).
pubmed: 20981276
pmcid: 2963078
doi: 10.1177/1947601909358184
Loog, L. et al. Inferring allele frequency trajectories from ancient DNA indicates that selection on a chicken gene coincided with changes in medieval husbandry practices. Mol. Biol. Evol. 34, 1981–1990 (2017).
pubmed: 28444234
pmcid: 5850110
doi: 10.1093/molbev/msx142
Qanbari, S. et al. Genetics of adaptation in modern chicken. PLoS Genet. 15, e1007989 (2019).
pubmed: 31034467
pmcid: 6508745
doi: 10.1371/journal.pgen.1007989
Ye, W. et al. Early middle Holocene climate oscillations recorded in the Beihuqiao Core, Yuhang, Zhejiang Province, China. J. Paleolimnol. 59, 263–278 (2017).
doi: 10.1007/s10933-017-9959-x
Wu, M. S. et al. Holocene hydrological and sea surface temperature changes in the northern coast of the South China Sea. J. Asian Earth Sci. 135, 268–280 (2017).
doi: 10.1016/j.jseaes.2017.01.004
Fan, Z. et al. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res. 26, 163–173 (2016).
pubmed: 26680994
pmcid: 4728369
doi: 10.1101/gr.197517.115
Wurster, C. M. et al. Forest contraction in north equatorial Southeast Asia during the Last Glacial Period. Proc. Natl Acad. Sci. USA 107, 15508–15511 (2010).
pubmed: 20660748
doi: 10.1073/pnas.1005507107
pmcid: 2932586
Mellars, P. Going east: new genetic and archaeological perspectives on the modern human colonization of Eurasia. Science 313, 796–800 (2006).
pubmed: 16902130
doi: 10.1126/science.1128402
Fumihito, A. et al. One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc. Natl Acad. Sci. USA 91, 12505–12509 (1994).
pubmed: 7809067
doi: 10.1073/pnas.91.26.12505
pmcid: 45467
Alberto, F. J. et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 9, 813 (2018).
pubmed: 29511174
pmcid: 5840369
doi: 10.1038/s41467-018-03206-y
Naval-Sanchez, M. et al. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nat. Commun. 9, 859 (2018).
pubmed: 29491421
pmcid: 5830443
doi: 10.1038/s41467-017-02809-1
Wang, G. D. et al. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat. Commun. 4, 1860 (2013).
pubmed: 23673645
doi: 10.1038/ncomms2814
Daly, K. G. et al. Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science 361, 85–88 (2018).
pubmed: 29976826
doi: 10.1126/science.aas9411
Schubert, M. et al. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc. Natl Acad. Sci. USA 111, E5661–E5669 (2014).
pubmed: 25512547
pmcid: 4284583
Kong, Y. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98, 152–153 (2011).
pubmed: 21651976
doi: 10.1016/j.ygeno.2011.05.009
Li, H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 30, 2843–2851 (2014).
pubmed: 24974202
pmcid: 4271055
doi: 10.1093/bioinformatics/btu356
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).
pubmed: 19377059
pmcid: 2693737
doi: 10.1093/molbev/msp077
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468
pmcid: 3014363
doi: 10.1016/j.ajhg.2010.11.011
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
pubmed: 17194218
pmcid: 1713260
doi: 10.1371/journal.pgen.0020190
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
pubmed: 25684545
pmcid: 4534335
doi: 10.1111/1755-0998.12387
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852
pmcid: 4342193
doi: 10.1186/s13742-015-0047-8
Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009).
pubmed: 19851460
pmcid: 2760211
doi: 10.1371/journal.pgen.1000695
Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009).
pubmed: 19779445
pmcid: 2842210
doi: 10.1038/nature08365
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
pubmed: 27004904
doi: 10.1093/molbev/msw054
pmcid: 8210823
McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).
pubmed: 27268795
pmcid: 4893825
doi: 10.1186/s13059-016-0974-4
Reimand, J., Arak, T. & Vilo, J. g:Profiler-a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res. 39, W307–W315 (2011).
pubmed: 21646343
pmcid: 3125778
doi: 10.1093/nar/gkr378