Reversing a model of Parkinson's disease with in situ converted nigral neurons.
Animals
Astrocytes
/ cytology
Axons
/ physiology
Disease Models, Animal
Dopamine
/ biosynthesis
Dopaminergic Neurons
/ cytology
Female
Heterogeneous-Nuclear Ribonucleoproteins
/ deficiency
Humans
In Vitro Techniques
Male
Mice
Neostriatum
/ cytology
Neural Pathways
Neurogenesis
Parkinson Disease
/ metabolism
Phenotype
Polypyrimidine Tract-Binding Protein
/ deficiency
Substantia Nigra
/ cytology
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
12
11
2018
accepted:
13
05
2020
entrez:
26
6
2020
pubmed:
26
6
2020
medline:
21
10
2020
Statut:
ppublish
Résumé
Parkinson's disease is characterized by loss of dopamine neurons in the substantia nigra
Identifiants
pubmed: 32581380
doi: 10.1038/s41586-020-2388-4
pii: 10.1038/s41586-020-2388-4
pmc: PMC7521455
mid: NIHMS1594393
doi:
Substances chimiques
Heterogeneous-Nuclear Ribonucleoproteins
0
PTBP1 protein, human
0
Ptbp1 protein, mouse
0
Polypyrimidine Tract-Binding Protein
139076-35-0
Dopamine
VTD58H1Z2X
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
550-556Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM049369
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM052872
Pays : United States
Organisme : NIH HHS
ID : GM052872
Pays : United States
Organisme : NIH HHS
ID : GM049369
Pays : United States
Commentaires et corrections
Type : CommentIn
Type : ErratumIn
Type : CommentIn
Type : CommentIn
Références
Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Primers 3, 17013 (2017).
pubmed: 28332488
doi: 10.1038/nrdp.2017.13
Barker, R. A., Götz, M. & Parmar, M. New approaches for brain repair—from rescue to reprogramming. Nature 557, 329–334 (2018).
pubmed: 29769670
doi: 10.1038/s41586-018-0087-1
Sonntag, K. C. et al. Pluripotent stem cell-based therapy for Parkinson’s disease: current status and future prospects. Prog. Neurobiol. 168, 1–20 (2018).
pubmed: 29653250
pmcid: 6077089
doi: 10.1016/j.pneurobio.2018.04.005
Cohen, D. E. & Melton, D. Turning straw into gold: directing cell fate for regenerative medicine. Nat. Rev. Genet. 12, 243–252 (2011).
pubmed: 21386864
doi: 10.1038/nrg2938
Yu, X., Nagai, J. & Khakh, B. S. Improved tools to study astrocytes. Nat. Rev. Neurosci. 21, 121–138 (2020).
pubmed: 32042146
doi: 10.1038/s41583-020-0264-8
Rivetti di Val Cervo, P. et al. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat. Biotechnol. 35, 444–452 (2017).
pubmed: 28398344
doi: 10.1038/nbt.3835
Wu, Z. et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington’s disease. Nat. Commun. 11, 1105 (2020).
pubmed: 32107381
pmcid: 7046613
doi: 10.1038/s41467-020-14855-3
Gascón, S., Masserdotti, G., Russo, G. L. & Götz, M. Direct Neuronal Reprogramming: Achievements, Hurdles, and New Roads to Success. Cell Stem Cell 21, 18–34 (2017).
pubmed: 28686866
doi: 10.1016/j.stem.2017.06.011
Xue, Y. et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152, 82–96 (2013).
pubmed: 23313552
pmcid: 3552026
doi: 10.1016/j.cell.2012.11.045
Xue, Y. et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat. Neurosci. 19, 807–815 (2016).
pubmed: 27110916
pmcid: 4882254
doi: 10.1038/nn.4297
Hu, J., Qian, H., Xue, Y. & Fu, X. D. PTB/nPTB: master regulators of neuronal fate in mammals. Biophys. Rep. 4, 204–214 (2018).
pubmed: 30310857
pmcid: 6153489
doi: 10.1007/s41048-018-0066-y
Bennett, C. F., Krainer, A. R. & Cleveland, D. W. Antisense Diseases. Annu. Rev. Neurosci. 42, 385–406 (2019).
pubmed: 31283897
pmcid: 7427431
doi: 10.1146/annurev-neuro-070918-050501
Guo, Z. et al. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14, 188–202 (2014).
pubmed: 24360883
doi: 10.1016/j.stem.2013.12.001
Lu, T. et al. REST and stress resistance in ageing and Alzheimer’s disease. Nature 507, 448–454 (2014).
pubmed: 24670762
pmcid: 4110979
doi: 10.1038/nature13163
Li, Q. et al. The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. eLife 3, e01201 (2014).
pubmed: 24448406
pmcid: 3896118
doi: 10.7554/eLife.01201
Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C. & Steindler, D. A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl Acad. Sci. USA 97, 13883–13888 (2000).
pubmed: 11095732
pmcid: 17670
doi: 10.1073/pnas.250471697
Sofroniew, M. V. Transgenic techniques for cell ablation or molecular deletion to investigate functions of astrocytes and other GFAP-expressing cell types. Methods Mol. Biol. 814, 531–544 (2012).
pubmed: 22144330
doi: 10.1007/978-1-61779-452-0_35
Tateno, T. & Robinson, H. P. The mechanism of ethanol action on midbrain dopaminergic neuron firing: a dynamic-clamp study of the role of I(h) and GABAergic synaptic integration. J. Neurophysiol. 106, 1901–1922 (2011).
pubmed: 21697445
doi: 10.1152/jn.00162.2011
Kimm, T., Khaliq, Z. M. & Bean, B. P. Differential regulation of action potential shape and burst-frequency firing by BK and Kv2 Channels in substantia nigra dopaminergic neurons. J. Neurosci. 35, 16404–16417 (2015).
pubmed: 26674866
pmcid: 4679822
doi: 10.1523/JNEUROSCI.5291-14.2015
Boisvert, M. M., Erikson, G. A., Shokhirev, M. N. & Allen, N. J. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22, 269–285 (2018).
pubmed: 29298427
pmcid: 5783200
doi: 10.1016/j.celrep.2017.12.039
Nott, A. et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019).
pubmed: 31727856
pmcid: 7028213
doi: 10.1126/science.aay0793
Grealish, S. et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15, 653–665 (2014).
pubmed: 25517469
pmcid: 4232736
doi: 10.1016/j.stem.2014.09.017
Thiele, S. L., Warre, R. & Nash, J. E. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson’s disease. J. Vis. Exp. 60, 3234 (2012).
Beal, M. F. Parkinson’s disease: a model dilemma. Nature 466, S8–S10 (2010).
pubmed: 20739935
doi: 10.1038/466S8a
Stott, S. R. & Barker, R. A. Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson’s disease. Eur. J. Neurosci. 39, 1042–1056 (2014).
pubmed: 24372914
doi: 10.1111/ejn.12459
Boix, J., Padel, T. & Paul, G. A partial lesion model of Parkinson’s disease in mice—characterization of a 6-OHDA-induced medial forebrain bundle lesion. Behav. Brain Res. 284, 196–206 (2015).
pubmed: 25698603
doi: 10.1016/j.bbr.2015.01.053
Zhu, H. & Roth, B. L. DREADD: a chemogenetic GPCR signaling platform. Int. J. Neuropsychopharmacol. 18, pyu007 (2015).
doi: 10.1093/ijnp/pyu007
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).
pubmed: 17360345
pmcid: 1829280
doi: 10.1073/pnas.0700293104
Chen, Y. et al. Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson’s disease. Cell Stem Cell 18, 817–826 (2016).
pubmed: 27133795
pmcid: 4892985
doi: 10.1016/j.stem.2016.03.014
Zhou, H. et al. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 181, 590-603 (2020).
Ouyang, H. et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature 511, 358–361 (2014).
pubmed: 25030175
pmcid: 4610745
doi: 10.1038/nature13465
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).
doi: 10.14806/ej.17.1.200
Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20, 65 (2019).
pubmed: 30917859
pmcid: 6437997
doi: 10.1186/s13059-019-1670-y
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Abercrombie, M. Estimation of nuclear population from microtome sections. Anat. Rec. 94, 239–247 (1946).
pubmed: 21015608
doi: 10.1002/ar.1090940210
Falk, T. et al. Vascular endothelial growth factor-B is neuroprotective in an in vivo rat model of Parkinson’s disease. Neurosci. Lett. 496, 43–47 (2011).
pubmed: 21507340
doi: 10.1016/j.neulet.2011.03.088
Baker, H., Joh, T. H. & Reis, D. J. Genetic control of number of midbrain dopaminergic neurons in inbred strains of mice: relationship to size and neuronal density of the striatum. Proc. Natl Acad. Sci. USA 77, 4369–4373 (1980).
pubmed: 6107905
pmcid: 349836
doi: 10.1073/pnas.77.7.4369
Kordower, J. H. et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290, 767–773 (2000).
pubmed: 11052933
doi: 10.1126/science.290.5492.767
Bahat-Stroomza, M. et al. Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson’s disease. J. Mol. Neurosci. 39, 199–210 (2009).
pubmed: 19127447
doi: 10.1007/s12031-008-9166-3
Liu, G., Chen, J. & Ma, Y. Simultaneous determination of catecholamines and polyamines in PC-12 cell extracts by micellar electrokinetic capillary chromatography with ultraviolet absorbance detection. J. Chromatogr. B 805, 281–288 (2004).
doi: 10.1016/j.jchromb.2004.03.011
De Benedetto, G. E. et al. A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. J. Pharm. Biomed. Anal. 98, 266–270 (2014).
pubmed: 24971521
doi: 10.1016/j.jpba.2014.05.039
Tareke, E., Bowyer, J. F. & Doerge, D. R. Quantification of rat brain neurotransmitters and metabolites using liquid chromatography/electrospray tandem mass spectrometry and comparison with liquid chromatography/electrochemical detection. Rapid Commun. Mass Sp. 21, 3898–3904 (2007).
doi: 10.1002/rcm.3295
Wang, S. R. et al. Role of vesicle pools in action potential pattern-dependent dopamine overflow in rat striatum in vivo. J. Neurochem. 119, 342–353 (2011).
pubmed: 21854394
doi: 10.1111/j.1471-4159.2011.07440.x
Xu, H. et al. Striatal dopamine release in a schizophrenia mouse model measured by electrochemical amperometry in vivo. Analyst 140, 3840–3845 (2015).
pubmed: 25651802
doi: 10.1039/C4AN02074J
Wang, C. et al. Synaptotagmin-11 is a critical mediator of parkin-linked neurotoxicity and Parkinson’s disease-like pathology. Nat. Commun. 9, 81 (2018).
pubmed: 29311685
pmcid: 5758517
doi: 10.1038/s41467-017-02593-y
Wang, L. et al. Modulation of dopamine release in the striatum by physiologically relevant levels of nicotine. Nat. Commun. 5, 3925 (2014).
pubmed: 24968237
doi: 10.1038/ncomms4925
Caiazzo, M. et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224–227 (2011).
pubmed: 21725324
doi: 10.1038/nature10284
Grealish, S., Mattsson, B., Draxler, P. & Björklund, A. Characterisation of behavioural and neurodegenerative changes induced by intranigral 6-hydroxydopamine lesions in a mouse model of Parkinson’s disease. Eur. J. Neurosci. 31, 2266–2278 (2010).
pubmed: 20529122
doi: 10.1111/j.1460-9568.2010.07265.x
Piallat, B., Benazzouz, A. & Benabid, A. L. Subthalamic nucleus lesion in rats prevents dopaminergic nigral neuron degeneration after striatal 6-OHDA injection: behavioural and immunohistochemical studies. Eur. J. Neurosci. 8, 1408–1414 (1996).
pubmed: 8758948
doi: 10.1111/j.1460-9568.1996.tb01603.x
Dunnett, S. B., Björklund, A., Stenevi, U. & Iversen, S. D. Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions. Brain Res. 215, 147–161 (1981).
pubmed: 7260584
Iancu, R., Mohapel, P., Brundin, P. & Paul, G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav. Brain Res. 162, 1–10 (2005).
pubmed: 15922062
doi: 10.1016/j.bbr.2005.02.023
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic Press, 1988).
Cohen, J. Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ. Psychol. Meas. 33, 107–112 (1973).
doi: 10.1177/001316447303300111