Electrical Impedance Tomography-Based Abdominal Subcutaneous Fat Estimation Method Using Deep Learning.
Journal
Computational and mathematical methods in medicine
ISSN: 1748-6718
Titre abrégé: Comput Math Methods Med
Pays: United States
ID NLM: 101277751
Informations de publication
Date de publication:
2020
2020
Historique:
received:
13
01
2020
revised:
05
04
2020
accepted:
30
04
2020
entrez:
27
6
2020
pubmed:
27
6
2020
medline:
11
5
2021
Statut:
epublish
Résumé
This paper proposes a deep learning method based on electrical impedance tomography (EIT) to estimate the thickness of abdominal subcutaneous fat. EIT for evaluating the thickness of abdominal subcutaneous fat is an absolute imaging problem that aims at reconstructing conductivity distributions from current-to-voltage data. Existing reconstruction methods based on EIT have difficulty handling the inherent drawbacks of strong nonlinearity and severe ill-posedness of EIT; hence, absolute imaging may not be possible using linearized methods. To handle nonlinearity and ill-posedness, we propose a deep learning method that finds useful solutions within a restricted admissible set by accounting for prior information regarding abdominal anatomy. We determined that a specially designed training dataset used during the deep learning process significantly reduces ill-posedness in the absolute EIT problem. In the preprocessing stage, we normalize current-voltage data to alleviate the effects of electrodeposition and body geometry by exploiting knowledge regarding electrode positions and body geometry. The performance of the proposed method is demonstrated through numerical simulations and phantom experiments using a 10 channel EIT system and a human-like domain.
Identifiants
pubmed: 32587631
doi: 10.1155/2020/9657372
pmc: PMC7305546
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9657372Informations de copyright
Copyright © 2020 Kyounghun Lee et al.
Déclaration de conflit d'intérêts
The authors declare that they have no conflicts of interest.
Références
Physiol Meas. 2015 Jun;36(6):1119-35
pubmed: 26007150
Physiol Meas. 2010 Jul;31(7):963-78
pubmed: 20551507
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Physiol Meas. 2019 Jul 23;40(7):074002
pubmed: 31091516
Physiol Meas. 2001 Feb;22(1):85-90
pubmed: 11236893
Nature. 2006 Dec 14;444(7121):881-7
pubmed: 17167477
Radiology. 2009 Apr;251(1):175-84
pubmed: 19332852
J Appl Physiol (1985). 2004 Dec;97(6):2333-8
pubmed: 15310748
Physiol Meas. 2015 Jun;36(6):1067-73
pubmed: 26009553
Neural Netw. 2015 Jan;61:85-117
pubmed: 25462637
IEEE Trans Med Imaging. 2018 Oct;37(10):2367-2377
pubmed: 29994023
IEEE Trans Med Imaging. 1991;10(4):621-8
pubmed: 18222869
Physiol Meas. 2009 Jun;30(6):S35-55
pubmed: 19491438
Physiol Meas. 2019 Apr 26;40(4):044004
pubmed: 30925491
Physiol Meas. 2004 Feb;25(1):125-42
pubmed: 15005311
IEEE Trans Med Imaging. 2011 Feb;30(2):231-42
pubmed: 20840893
Nutr Metab Cardiovasc Dis. 2007 May;17(4):319-26
pubmed: 17110092
Physiol Meas. 1997 Nov;18(4):289-303
pubmed: 9413863
Arterioscler Thromb Vasc Biol. 2008 Jun;28(6):1039-49
pubmed: 18356555
Physiol Meas. 2018 Jun 27;39(6):064005
pubmed: 29846182