Optimal priming of poxvirus vector (NYVAC)-based HIV vaccine regimens for T cell responses requires three DNA injections. Results of the randomized multicentre EV03/ANRS VAC20 Phase I/II Trial.
AIDS Vaccines
/ administration & dosage
Adolescent
Adult
CD8-Positive T-Lymphocytes
/ immunology
Female
Genetic Vectors
/ administration & dosage
HIV Antigens
/ administration & dosage
Humans
Interferon-gamma
/ immunology
Male
Middle Aged
Poxviridae
/ genetics
T-Lymphocytes, Helper-Inducer
/ metabolism
Vaccines, DNA
/ administration & dosage
env Gene Products, Human Immunodeficiency Virus
/ administration & dosage
Journal
PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
25
10
2019
accepted:
06
04
2020
entrez:
27
6
2020
pubmed:
27
6
2020
medline:
12
8
2020
Statut:
epublish
Résumé
DNA vectors have been widely used as a priming of poxvirus vaccine in prime/boost regimens. Whether the number of DNA impacts qualitatively or quantitatively the immune response is not fully explored. With the aim to reinforce T-cell responses by optimizing the prime-boost regimen, the multicentric EV03/ANRS VAC20 phase I/II trial, randomized 147 HIV-negative volunteers to either 3xDNA plus 1xNYVAC (weeks 0, 4, 8 plus 24; n = 74) or to 2xDNA plus 2xNYVAC (weeks 0, 4 plus 20, 24; n = 73) groups. T-cell responses (IFN-γ ELISPOT) to at least one peptide pool were higher in the 3xDNA than the 2xDNA groups (91% and 80% of vaccinees) (P = 0.049). In the 3xDNA arm, 26 (37%) recipients developed a broader T-cell response (Env plus at least to one of the Gag, Pol, Nef pools) than in the 2xDNA (15; 22%) arms (primary endpoint; P = 0.047) with a higher magnitude against Env (at week 26) (P<0.001). In both groups, vaccine regimens induced HIV-specific polyfunctional CD4 and CD8 T cells and the production of Th1, Th2 and Th17/IL-21 cytokines. Antibody responses were also elicited in up to 81% of vaccines. A higher percentage of IgG responders was noted in the 2xDNA arm compared to the 3xDNA arm, while the 3xDNA group tended to elicit a higher magnitude of IgG3 response against specific Env antigens. We show here that the modulation of the prime strategy, without modifying the route or the dose of administration, or the combination of vectors, may influence the quality of the responses.
Identifiants
pubmed: 32589686
doi: 10.1371/journal.ppat.1008522
pii: PPATHOGENS-D-19-01950
pmc: PMC7319597
doi:
Substances chimiques
AIDS Vaccines
0
HIV Antigens
0
IFNG protein, human
0
Vaccines, DNA
0
env Gene Products, Human Immunodeficiency Virus
0
Interferon-gamma
82115-62-6
Types de publication
Clinical Trial, Phase I
Clinical Trial, Phase II
Journal Article
Multicenter Study
Randomized Controlled Trial
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1008522Subventions
Organisme : Medical Research Council
ID : MC_UU_12023/23
Pays : United Kingdom
Organisme : NIAID NIH HHS
ID : HHSN272201400049C
Pays : United States
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Curr Opin HIV AIDS. 2013 Sep;8(5):421-31
pubmed: 23743791
J Virol. 2018 Mar 28;92(8):
pubmed: 29386288
Infect Immun. 1996 Sep;64(9):3833-44
pubmed: 8751936
PLoS One. 2015 Apr 15;10(4):e0119629
pubmed: 25875843
Science. 2013 May 24;340(6135):1237874
pubmed: 23704576
Proc Natl Acad Sci U S A. 2013 May 28;110(22):9019-24
pubmed: 23661056
J Immunol Methods. 2014 Jul;409:131-46
pubmed: 24291345
J Infect Dis. 1998 Jun;177(6):1664-73
pubmed: 9607847
Sci Transl Med. 2014 Mar 19;6(228):228ra39
pubmed: 24648342
N Engl J Med. 2009 Dec 3;361(23):2209-20
pubmed: 19843557
Lancet HIV. 2019 Nov;6(11):e737-e749
pubmed: 31601541
PLoS One. 2013;8(2):e55831
pubmed: 23418465
J Immunol Methods. 2012 Jan 31;375(1-2):57-67
pubmed: 21968254
Nature. 2011 May 26;473(7348):523-7
pubmed: 21562493
J Virol. 2008 Dec;82(24):12449-63
pubmed: 18842730
PLoS One. 2018 Nov 29;13(11):e0206838
pubmed: 30496299
J Clin Invest. 2019 Nov 1;129(11):4838-4849
pubmed: 31589165
Methods Mol Biol. 2009;485:395-405
pubmed: 19020839
J Virol. 2016 Mar 28;90(8):4133-4149
pubmed: 26865719
N Engl J Med. 2012 Apr 5;366(14):1275-86
pubmed: 22475592
J Virus Erad. 2016 Jan 01;2(1):5-11
pubmed: 27482428
J Infect Dis. 2010 Feb 15;201(4):600-7
pubmed: 20078213
PLoS One. 2011;6(8):e21225
pubmed: 21857901
J Exp Med. 2008 Jan 21;205(1):63-77
pubmed: 18195071
Stat Med. 2009 Mar 30;28(7):1159-75
pubmed: 19170020
PLoS One. 2010 Sep 21;5(9):e12873
pubmed: 20877623
Front Immunol. 2019 Apr 08;10:697
pubmed: 31024542
Immunol Rev. 2017 Jan;275(1):245-261
pubmed: 28133811
J Infect Dis. 2011 Mar 1;203(5):610-9
pubmed: 21282192
AIDS Res Hum Retroviruses. 2017 Nov 27;34(2):193-205
pubmed: 28969431
Vaccine. 2008 Jun 13;26(25):3162-74
pubmed: 18502003
Vaccine. 2008 Jun 13;26(25):3153-61
pubmed: 18502002
Viruses. 2010 Feb 1;2(2):435-467
pubmed: 20407589
Nat Med. 1999 Jun;5(6):612-4
pubmed: 10371492
Immunity. 2019 Jan 15;50(1):241-252.e6
pubmed: 30552025
Nature. 2001 Apr 19;410(6831):980-7
pubmed: 11309628
Cell Rep. 2017 Dec 26;21(13):3681-3690
pubmed: 29281818
J Virol. 2019 Jan 17;93(3):
pubmed: 30429343
AIDS Res Hum Retroviruses. 2007 Dec;23(12):1555-62
pubmed: 18160013
AIDS Res Hum Retroviruses. 2017 Aug;33(8):880-888
pubmed: 28027665
PLoS One. 2015 Jun 29;10(6):e0131748
pubmed: 26121679
Vaccine. 2011 Oct 26;29(46):8417-28
pubmed: 21864626
Nat Med. 2003 Jun;9(6):729-35
pubmed: 12766765
J Virol. 2019 Jan 17;93(3):
pubmed: 30429340