A Compound Heterozygosis of Two Novel Mutations Causes Factor X Deficiency in a Chinese Pedigree.
Coagulation
Compound heterozygous mutations
Factor X deficiency
Genetic analysis
Journal
Acta haematologica
ISSN: 1421-9662
Titre abrégé: Acta Haematol
Pays: Switzerland
ID NLM: 0141053
Informations de publication
Date de publication:
2021
2021
Historique:
received:
16
01
2020
accepted:
03
04
2020
pubmed:
1
7
2020
medline:
7
4
2021
entrez:
30
6
2020
Statut:
ppublish
Résumé
Mutations in the F10-coding gene can cause factor X (FX) deficiency, leading to abnormal coagulation activity and severe tendency for hemorrhage. Therefore, identifying mutations in F10 is important for diagnosing congenital FX deficiency. We studied a 63-year-old male patient with FX deficiency and 10 of his family members. Clotting and immunological methods were used to determine activated partial thromboplastin time (aPTT), prothrombin time (PT), thrombin time (TT), fibrinogen levels, FX activity, and FX antigen levels. The platelet count was determined. A mixing study was performed to eliminate the presence of coagulation factor inhibitors and lupus anticoagulant. Mutations were searched using whole-exome sequencing and certified by Sanger sequencing. Genetic analysis of the proband identified two single-base substitutions: c.1085G>A (p.Ser362Asn) and c.1152C>A (p.Tyr384Ter, termination codon, caused by the DNA sequence TAA). His FX activity and antigen levels were 1.7% and 408.53 pg/mL, respectively; aPTT and PT were 52.3 and 48.0 s, respectively. One brother had the same compound heterozygous mutations, and his FX activity and antigen levels were 1.3% and 465.47 pg/mL, respectively; his aPTT and PT were 65.2 and 54.5 s, respectively. His mother, another brother, and one sister were heterozygous for c.1085G>A (p.Ser362Asn), and his daughter and grandson (6 years old) were heterozygous for c.1152C>A (p.Tyr384Ter). The heterozygous variants p.Ser362Asn or p.Tyr384Ter indicate mild FX deficiency, but the compound heterozygous mutation of the two causes severe congenital FX deficiency and bleeding. Genetic analysis of these two mutations may help characterize the bleeding tendency and confirm congenital FX deficiency.
Sections du résumé
BACKGROUND
Mutations in the F10-coding gene can cause factor X (FX) deficiency, leading to abnormal coagulation activity and severe tendency for hemorrhage. Therefore, identifying mutations in F10 is important for diagnosing congenital FX deficiency.
METHODS
We studied a 63-year-old male patient with FX deficiency and 10 of his family members. Clotting and immunological methods were used to determine activated partial thromboplastin time (aPTT), prothrombin time (PT), thrombin time (TT), fibrinogen levels, FX activity, and FX antigen levels. The platelet count was determined. A mixing study was performed to eliminate the presence of coagulation factor inhibitors and lupus anticoagulant. Mutations were searched using whole-exome sequencing and certified by Sanger sequencing.
RESULTS
Genetic analysis of the proband identified two single-base substitutions: c.1085G>A (p.Ser362Asn) and c.1152C>A (p.Tyr384Ter, termination codon, caused by the DNA sequence TAA). His FX activity and antigen levels were 1.7% and 408.53 pg/mL, respectively; aPTT and PT were 52.3 and 48.0 s, respectively. One brother had the same compound heterozygous mutations, and his FX activity and antigen levels were 1.3% and 465.47 pg/mL, respectively; his aPTT and PT were 65.2 and 54.5 s, respectively. His mother, another brother, and one sister were heterozygous for c.1085G>A (p.Ser362Asn), and his daughter and grandson (6 years old) were heterozygous for c.1152C>A (p.Tyr384Ter).
CONCLUSION
The heterozygous variants p.Ser362Asn or p.Tyr384Ter indicate mild FX deficiency, but the compound heterozygous mutation of the two causes severe congenital FX deficiency and bleeding. Genetic analysis of these two mutations may help characterize the bleeding tendency and confirm congenital FX deficiency.
Identifiants
pubmed: 32599596
pii: 000507689
doi: 10.1159/000507689
doi:
Substances chimiques
Factor X
9001-29-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
176-181Informations de copyright
© 2020 S. Karger AG, Basel.