Age and Sex Influences Gamma-aminobutyric Acid Concentrations in the Developing Brain of Very Premature Infants.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 06 2020
29 06 2020
Historique:
received:
16
08
2019
accepted:
25
05
2020
entrez:
1
7
2020
pubmed:
1
7
2020
medline:
16
12
2020
Statut:
epublish
Résumé
Gamma-aminobutyric acid (GABA) and glutamate are principal neurotransmitters essential for late gestational brain development and may play an important role in prematurity-related brain injury. In vivo investigation of GABA in the preterm infant with standard proton magnetic resonance spectroscopy (
Identifiants
pubmed: 32601466
doi: 10.1038/s41598-020-67188-y
pii: 10.1038/s41598-020-67188-y
pmc: PMC7324587
doi:
Substances chimiques
Glutamine
0RH81L854J
Glutamic Acid
3KX376GY7L
gamma-Aminobutyric Acid
56-12-2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10549Subventions
Organisme : NIH HHS
ID : 1U54HD090257
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001876
Pays : United States
Organisme : NCATS NIH HHS
ID : KL2 TR001877
Pays : United States
Références
Murphy, S. L., Mathews, T. J., Martin, J. A., Minkovitz, C. S. & Strobino, D. M. Annual Summary of Vital Statistics: 2013-2014. Pediatrics 139, https://doi.org/10.1542/peds.2016-3239 (2017).
Adams-Chapman, I. et al. Neurodevelopmental Impairment Among Extremely Preterm Infants in the Neonatal Research Network. Pediatrics 141, https://doi.org/10.1542/peds.2017-3091 . Epub 2018 Apr 17 (2018).
Ream, M. A. & Lehwald, L. Neurologic Consequences of Preterm Birth. Curr. Neurol. Neurosci. Rep. 18, 48–2 (2018).
pubmed: 29907917
Laptook, A. R., O’Shea, T. M., Shankaran, S. & Bhaskar, B. & NICHD Neonatal Network. Adverse neurodevelopmental outcomes among extremely low birth weight infants with a normal head ultrasound: prevalence and antecedents. Pediatrics 115, 673–680 (2005).
pubmed: 15741371
Gire, C. et al. Quality of life of extremely preterm school-age children without major handicap: a cross-sectional observational study. Arch. Dis. Child. (2018).
Smyser, C. D. et al. Longitudinal analysis of neural network development in preterm infants. Cereb. Cortex 20, 2852–2862 (2010).
pubmed: 20237243
pmcid: 2978240
Ben-Ari, Y. The GABA excitatory/inhibitory developmental sequence: a personal journey. Neuroscience 279, 187–219 (2014).
pubmed: 25168736
Ben-Ari, Y., Khalilov, I., Kahle, K. T. & Cherubini, E. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18, 467–486 (2012).
pubmed: 22547529
Represa, A. & Ben-Ari, Y. Trophic actions of GABA on neuronal development. Trends Neurosci. 28, 278–283 (2005).
pubmed: 15927682
Robinson, S., Li, Q., Dechant, A. & Cohen, M. L. Neonatal loss of gamma-aminobutyric acid pathway expression after human perinatal brain injury. J. Neurosurg. 104, 396–408 (2006).
pubmed: 16776375
pmcid: 1762128
Shaw, J. C., Palliser, H. K., Dyson, R. M., Berry, M. J. & Hirst, J. J. Disruptions to the cerebellar GABAergic system in juvenile guinea pigs following preterm birth. Int. J. Dev. Neurosci. 65, 1–10 (2018).
Shaw, J. C., Palliser, H. K., Walker, D. W. & Hirst, J. J. Preterm birth affects GABAA receptor subunit mRNA levels during the foetal-to-neonatal transition in guinea pigs. J. Dev. Orig Health. Dis. 6, 250–260 (2015).
pubmed: 25661827
Card, D. et al. Brain metabolite concentrations are associated with illness severity scores and white matter abnormalities in very preterm infants. Pediatr. Res. 74, 75–81 (2013).
pubmed: 23575877
pmcid: 4965266
Dwyer, G. E., Hugdahl, K., Specht, K. & Gruner, R. Current Practice and New Developments in the Use of In Vivo Magnetic Resonance Spectroscopy for the Assessment of Key Metabolites Implicated in the Pathophysiology of Schizophrenia. Curr. Top. Med. Chem. 18, 1908–1924 (2018).
pubmed: 30499397
Mullins, P. G. et al. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage 86, 43–52 (2014).
pubmed: 23246994
Sanaei Nezhad, F. et al. Quantification of GABA, glutamate and glutamine in a single measurement at 3 T using GABA-edited MEGA-PRESS. NMR Biomed. 31, https://doi.org/10.1002/nbm.3847 . Epub 2017 Nov 12 (2018).
Kwon, S. H. et al. GABA, resting-state connectivity and the developing brain. Neonatology 106, 149–155 (2014).
pubmed: 24970028
pmcid: 4134402
Tomiyasu, M. et al. In vivo estimation of gamma-aminobutyric acid levels in the neonatal brain. NMR Biomed. 30, https://doi.org/10.1002/nbm.3666 . Epub 2016 Nov 11 (2017).
Tanifuji, S. et al. Temporal brain metabolite changes in preterm infants with normal development. Brain Dev. 39, 196–202 (2017).
pubmed: 27838187
Kidokoro, H., Neil, J. J. & Inder, T. E. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am. J. Neuroradiol. 34, 2208–2214 (2013).
pubmed: 23620070
pmcid: 4163698
Evangelou, I. E., du Plessis, A. J., Vezina, G., Noeske, R. & Limperopoulos, C. Elucidating Metabolic Maturation in the Healthy Fetal Brain Using 1H-MR Spectroscopy. AJNR Am. J. Neuroradiol. 37, 360–366 (2016).
pubmed: 26405083
I. E. Evangelou, R. Noeske & C. Limperopoulos. Retrospective correction of motion induced artifacts in 1H magnetic resonance spectroscopy of the fetal brain. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 853-857 (2015).
Provencher, S. W. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 14, 260–264 (2001).
pubmed: 11410943
Provencher, S. W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672–679 (1993).
pubmed: 8139448
Maddock, R. J., Caton, M. D. & Ragland, J. D. Estimating glutamate and Glx from GABA-optimized MEGA-PRESS: Off-resonance but not difference spectra values correspond to PRESS values. Psychiatry. Res. Neuroimaging 279, 22–30 (2018).
pubmed: 30081290
pmcid: 6105414
Kreis, R. The trouble with quality filtering based on relative Cramer-Rao lower bounds. Magn. Reson. Med. 75, 15–18 (2016).
pubmed: 25753153
Basu, S. K. et al. Third Trimester Cerebellar Metabolite Concentrations are Decreased in Very Premature Infants with Structural Brain Injury. Sci. Rep. 9, 1212–4 (2019).
pubmed: 30718546
pmcid: 6362247
Xu, G. et al. Late development of the GABAergic system in the human cerebral cortex and white matter. J. Neuropathol. Exp. Neurol. 70, 841–858 (2011).
pubmed: 21937910
pmcid: 3193835
Grewal, M. et al. GABA quantitation using MEGA-PRESS: Regional and hemispheric differences. J. Magn. Reson. Imaging 44, 1619–1623 (2016).
pubmed: 27264205
pmcid: 5512099
Ramu, J., Konak, T. & Liachenko, S. Magnetic resonance spectroscopic analysis of neurometabolite changes in the developing rat brain at 7T. Brain Res. 1651, 114–120 (2016).
pubmed: 27663970
Tkac, I., Rao, R., Georgieff, M. K. & Gruetter, R. Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy. Magn. Reson. Med. 50, 24–32 (2003).
pubmed: 12815675
Horder, J. et al. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl. Psychiatry. 8, 106–1 (2018).
pubmed: 29802263
pmcid: 5970172
Ende, G. et al. Impulsivity and Aggression in Female BPD and ADHD Patients: Association with ACC Glutamate and GABA Concentrations. Neuropsychopharmacology 41, 410–418 (2016).
pubmed: 26040503
Ende, G. Proton Magnetic Resonance Spectroscopy: Relevance of Glutamate and GABA to Neuropsychology. Neuropsychol. Rev. 25, 315–325 (2015).
pubmed: 26264407
Kreis, R. et al. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 48, 949–958 (2002).
pubmed: 12465103
Bluml, S. et al. Metabolic maturation of the human brain from birth through adolescence: insights from in vivo magnetic resonance spectroscopy. Cereb. Cortex 23, 2944–2955 (2013).
pubmed: 22952278
Xu, D. et al. MR spectroscopy of normative premature newborns. J. Magn. Reson. Imaging 33, 306–311 (2011).
pubmed: 21274971
pmcid: 3391540
Akasaka, M. et al. Assessing Temporal Brain Metabolite Changes in Preterm Infants Using Multivoxel Magnetic Resonance Spectroscopy. Magn. Reson. Med. Sci. 15, 187–192 (2016).
pubmed: 26567757
O’Gorman, R. L., Michels, L., Edden, R. A., Murdoch, J. B. & Martin, E. In vivo detection of GABA and glutamate with MEGA-PRESS: reproducibility and gender effects. J. Magn. Reson. Imaging 33, 1262–1267 (2011).
pubmed: 21509888
pmcid: 3154619
Gao, F. et al. Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. Neuroimage 78, 75–82 (2013).
pubmed: 23587685
pmcid: 3716005
Epperson, C. N. et al. Cortical gamma-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch. Gen. Psychiatry 59, 851–858 (2002).
pubmed: 12215085
Epperson, C. N. et al. Preliminary evidence of reduced occipital GABA concentrations in puerperal women: a 1H-MRS study. Psychopharmacology (Berl) 186, 425–433 (2006).
Gaiarsa, J. L., Kuczewski, N. & Porcher, C. Contribution of metabotropic GABA(B) receptors to neuronal network construction. Pharmacol. Ther. 132, 170–179 (2011).
pubmed: 21718720
Cellot, G. & Cherubini, E. Functional role of ambient GABA in refining neuronal circuits early in postnatal development. Front. Neural Circuits 7, 136 (2013).
pubmed: 23964205
pmcid: 3741556
Wu, C. & Sun, D. GABA receptors in brain development, function, and injury. Metab. Brain Dis. 30, 367–379 (2015).
pubmed: 24820774
Huang, Z. J., Di Cristo, G. & Ango, F. Development of GABA innervation in the cerebral and cerebellar cortices. Nat. Rev. Neurosci. 8, 673–686 (2007).
pubmed: 17704810
Ben-Ari, Y. Oxytocin and Vasopressin, and the GABA Developmental Shift During Labor and Birth: Friends or Foes. Front. Cell. Neurosci. 12, 254 (2018).
pubmed: 30186114
pmcid: 6110879
Volpe, J. J. in Volpe’s Neurology of the Newborn 100-177 (Elsevier, 2017).
Ende, G. Proton Magnetic Resonance Spectroscopy: Relevance of Glutamate and GABA to Neuropsychology. Neuropsychol. Rev. 25, 315–325 (2015).
pubmed: 26264407
Schur, R. R. et al. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies. Hum. Brain Mapp. 37, 3337–3352 (2016).
pubmed: 27145016
pmcid: 6867515
Harada, M. et al. Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J. Autism Dev. Disord. 41, 447–454 (2011).
pubmed: 20652388
Jantzie, L. L. et al. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury. Mol. Cell. Neurosci. 61, 152–162 (2014).
pubmed: 24983520
Davis, A. S., Berger, V. K. & Chock, V. Y. Perinatal Neuroprotection for Extremely Preterm Infants. Am. J. Perinatol. 33, 290–296 (2016).
pubmed: 26799965
Marsman, A. et al. Detection of Glutamate Alterations in the Human Brain Using (1)H-MRS: Comparison of STEAM and sLASER at 7 T. Front. Psychiatry. 8, 60 (2017).
pubmed: 28484398
pmcid: 5399075
Harris, A. D., Saleh, M. G. & Edden, R. A. Edited (1) H magnetic resonance spectroscopy in vivo: Methods and metabolites. Magn. Reson. Med. 77, 1377–1389 (2017).
pubmed: 28150876
pmcid: 5352552
Dhamala, E. et al. Validation of in vivo MRS measures of metabolite concentrations in the human brain. NMR Biomed. 32, e4058 (2019).
pubmed: 30663818