Development of A Thermo-Responsive Conjugated Polymer with Photobleaching-Resistance Property and Tunable Photosensitizing Performance.


Journal

Macromolecular rapid communications
ISSN: 1521-3927
Titre abrégé: Macromol Rapid Commun
Pays: Germany
ID NLM: 9888239

Informations de publication

Date de publication:
Aug 2020
Historique:
received: 05 05 2020
revised: 15 06 2020
pubmed: 2 7 2020
medline: 28 11 2020
entrez: 2 7 2020
Statut: ppublish

Résumé

A thermo-responsive conjugated polymer, PFBT-gPA is synthesized by grafting the poly(N-isopropylacrylamide) (PNIPAAm) to the side chains of a conjugated polyfluorene derivative through atom transfer radical polymerization (ATRP). PFBT-gPA undergoes a reversible phase transition in water below and above the lower critical solution temperature (LCST) and the process is studied by differential scanning calorimetry (DSC) analysis and UV/vis absorption spectra. PFBT-gPA shows a good photostability under UV light irradiation especially above the LCST. Moreover, the photosensitizing performance of PFBT-gPA could be tuned simply by changing temperature. The unique properties of PFBT-gPA promise its potential applications in sensing and photodynamic therapy.

Identifiants

pubmed: 32608545
doi: 10.1002/marc.202000249
doi:

Substances chimiques

Acrylic Resins 0
Fluorenes 0
Photosensitizing Agents 0
Polymers 0
poly((9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-(2,1',3)-thiadiazole)) 0
Water 059QF0KO0R
poly-N-isopropylacrylamide 25189-55-3

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2000249

Subventions

Organisme : National Natural Science Foundation of China
ID : 21533012
Organisme : National Natural Science Foundation of China
ID : 21708041
Organisme : National Natural Science Foundation of China
ID : 21773268

Informations de copyright

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

a) A. Parthasarathy, H. C. Pappas, E. H. Hill, Y. Huang, D. G. Whitten, K. S. Schanze, ACS Appl. Mater. Interfaces 2015, 7, 28017;
b) F. Peng, L. Qiu, R. Chai, F. Meng, C. Yan, Y. Chen, J. Qi, Y. Zhan, C. Xing, Macromol. Chem. Phys. 2018, 219, 1700440.
a) Y. Fan, C. Xing, H. Yuan, R. Chai, L. Zhao, Y. Zhan, ACS Appl. Mater. Interfaces 2017, 9, 20313;
b) W. Lee, D. Lee, J.-Y. Kim, S. Lee, J. Yoon, Mater. Chem. Front. 2018, 2, 291.
a) Y. Wang, L. Feng, S. Wang, Adv. Funct. Mater. 2019, 29, 1806818;
b) S. S. Khatoon Y. Chen, H. Zhao, F. Lv, L. Liu, S, Wang, Biomater. Sci. 2020, 8, 2156.
a) L. Guo, H. Wang, Y. Wang, F. Liu, L. Feng, ACS Appl. Mater. Interfaces 2020, 12, 21254;
b) L. Liu, X. Wang, S. Zhu, C. Yao, D. Ban, R. Liu, L. Li, S. Wang, Chem. Mater. 2020, 32, 438.
a) F. Peng, L. Qiu, R. Chai, F. Meng, C. Yan, Y. Chen, J. Qi, Y. Zhan, C. Xing, Macromol. Chem. Phys. 2018, 219, 1700440;
b) L. Zhou, F. Lv, L. Liu, S. Wang, CCS Chem. 2019, 1, 97.
a) T. Nakamura, M. Vacha, J. Phys. Chem. Lett. 2020, 11, 3103;
b) S. Wang, J. Liu, G. Feng, L. G. Ng, B. Liu, Adv. Funct. Mater. 2019, 29, 1808365;
c) W. Xu, M. M. S. Lee, Z. Zhang, H. H. Y. Sung, I. D. Williams, R. T. K. Kwok, J. W. Y. Lam, D. Wang, B. Z. Tang, Chem. Sci. 2019, 10, 3494;
d) X. Pang, Y. Tan, C. Tan, W. Li, N. Du, Y. Lu, Y. Jiang, ACS Appl. Mater. Interfaces 2019, 11, 28246.
a) M. Li, P. He, S. Li, X. Wang, L. Liu, F. Lv, S. Wang, ACS Biomater. Sci. Eng. 2018, 4, 20373;
b) H. Yuan, Y. Zhan, A. E. Rowan, C. Xing, P. H. J. Kouwer, Angew. Chem., Int. Ed. 2020, 59, 2720;
c) Z. Meng, W. Hou, H. Zhou, L. Zhou, H. Chen, C. Wu, Macromol. Rapid. Commun. 2018, 39, 1700614.
a) H. Bai, H. Lu, X. Fu, E. Zhang, F. Lv, L. Liu, S. Wang, Biomacromolecules 2018, 19, 2117;
b) L. Feng, L. Liu, F. Lv, G. C. Bazan, S. Wang, Adv. Mater. 2014, 26, 3926;
c) H. Santos Silva, A. Tournebize, D. Bégué, H. Peisert, T. Chasse, J.-L. Gardette, S. Therias, A. Rivatonde, R. C. Hiorns, RSC Adv. 2014, 4, 54919;
d) Y. Wang, H. Yao, Z. Zhuang, J. Yao, J. Zhou, Z. Zhao, ACS Appl. Mater. Interfaces 2018, 10, 35430;
e) H. Park, D. T. Hoang, K. Paeng, J. Yang, L. J. Kaufman, Nano Lett. 2015, 15, 7604.
a) S. S. Balamurugan, G. B. Bantchev, Y. Yang, R. L. McCarley, Angew. Chem., Int. Ed. 2005, 44, 4872;
b) Z. Ren, Y. Wang, S. Ma, S. Duan, X. Yang, P. Gao, X. Zhang, Q. Cai, ACS Appl. Mater. Interfaces 2015, 7, 19006.
Y. Ono, T. Shikata, J. Am. Chem. Soc. 2006, 128, 10030.
K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921.
M. Heskins, J. E. Guillet, J. Macromol. Sci., Part A: Pure Appl. Chem. 1968, 2, 1441.
B. Liu, G. C. Bazan, J. Am. Chem. Soc. 2004, 126, 1942.
X. Xiao, Y.-Q. Fu, J.-J. Zhou, Z.-S. Bo, L. Li, C.-M. Chan, Macromol. Rapid. Commun. 2007, 28, 1003.

Auteurs

Qingling Xu (Q)

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Fengting Lv (F)

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Libing Liu (L)

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Shu Wang (S)

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Articles similaires

Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Classifications MeSH