Nasal high-frequency percussive ventilation vs nasal continuous positive airway pressure in newborn infants respiratory distress: A cross over clinical trial.


Journal

Pediatric pulmonology
ISSN: 1099-0496
Titre abrégé: Pediatr Pulmonol
Pays: United States
ID NLM: 8510590

Informations de publication

Date de publication:
10 2020
Historique:
received: 27 05 2020
accepted: 26 06 2020
pubmed: 2 7 2020
medline: 18 2 2021
entrez: 2 7 2020
Statut: ppublish

Résumé

To determine if nasal high-frequency percussive ventilation (nHFPV) to manage neonatal respiratory distress decreases the regional cerebral oxygen saturation (rScO A prospective, randomized, monocentric, open-label, noninferiority crossover trial. Newborns of gestational age (GA) ≥ 33 weeks exhibiting persistent respiratory distress after 10 minutes of life were treated with nHFPV and nCPAP, in succession and in random order. The primary endpoint was the mean rScO Forty-nine newborns were randomized; the mean GA and birth weight was 36.4 ± 1.9 weeks and 2718 ± 497 g. The mean rScO In our study on newborns of GA ≥33 weeks treated for respiratory distress, cerebral oxygenation via nHFPV was not inferior to nCPAP.

Identifiants

pubmed: 32609946
doi: 10.1002/ppul.24935
doi:

Banques de données

EudraCT
['2013‐A01399‐36']

Types de publication

Journal Article Randomized Controlled Trial Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2617-2623

Informations de copyright

© 2020 Wiley Periodicals LLC.

Références

Kumar A, Bhat BV. Epidemiology of respiratory distress of newborns. Indian J Pediatr. 1996;63(1):93-98.
Teune MJ, Bakhuizen S, Gyamfi Bannerman C, et al. A systematic review of severe morbidity in infants born late preterm. Am J Obstet Gynecol. 2011;205(4):374.e1-9.
Hermansen CL, Lorah KN. Respiratory distress in the newborn. Am Fam Physician. 2007;76(7):987-994.
Edwards MO, Kotecha SJ, Kotecha S. Respiratory distress of the term newborn infant. Paediatr Respir Rev. 2013;14(1):29-36.
Sweet DG, Carnielli V, Greisen G, et al. European consensus guidelines on the management of respiratory distress syndrome - 2019 update. Neonatology. 2019;115(4):432-450.
Salim A, Martin M. High-frequency percussive ventilation. Crit Care Med. 2005;33(3 suppl):S241-S245.
Dumas De La Roque E, Bertrand C, Tandonnet O, et al. Nasal high frequency percussive ventilation versus nasal continuous positive airway pressure in transient tachypnea of the newborn: a pilot randomized controlled trial (NCT00556738). Pediatr Pulmonol. 2011;46(3):218-223.
Lemmers PMA, Toet MC, van Bel F. Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics. 2008;121(1):142-147.
Wijbenga RG, Lemmers PMA, van Bel F. Cerebral oxygenation during the first days of life in preterm and term neonates: differences between different brain regions. Pediatr Res. 2011;70(4):389-394.
Diblasi RM. Nasal continuous positive airway pressure (CPAP) for the respiratory care of the newborn infant. Respir Care. 2009;54(9):1209-1235.
Li J, Li X, Huang X, Zhang Z. Noninvasive high-frequency oscillatory ventilation as respiratory support in preterm infants: a meta-analysis of randomized controlled trials. Respir Res. 2019;20(1):58.
Chen L, Wang L, Ma J, Feng Z, Li J, Shi Y. Nasal high-frequency oscillatory ventilation in preterm infants with respiratory distress syndrome and ARDS after extubation: a randomized controlled trial. Chest. 2019;155(4):740-748.
Mukerji A, Finelli M, Belik J. Nasal high-frequency oscillation for lung carbon dioxide clearance in the newborn. Neonatology. 2013;103(3):161-165.
Dani C, Bertini G, Cecchi A, Corsini I, Pratesi S, Rubaltelli FF. Brain haemodynamic effects of nasal continuous airway pressure in preterm infants of less than 30 weeks' gestation. Acta Paediatr. 2007;96(10):1421-1425.
Milan A, Freato F, Vanzo V, Chiandetti L, Zaramella P. Influence of ventilation mode on neonatal cerebral blood flow and volume. Early Hum Dev. 2009;85(7):415-419.
Lucangelo U, Fontanesi L, Antonaglia V, et al. High frequency percussive ventilation (HFPV): principles and technique. Minerva Anestesiol. 2003;69(11):841-848. 848-851.
Panitch HB. Airway clearance in children with neuromuscular weakness. Curr Opin Pediatr. 2006;18(3):277-281.
Natale JE, Pfeifle J, Homnick DN. Comparison of intrapulmonary percussive ventilation and chest physiotherapy: a pilot study in patients with cystic fibrosis. Chest. 1994;105(6):1789-1793.
Renesme L, Elleau C, Nolent P, et al. Effect of high-frequency oscillation and percussion versus conventional ventilation in a piglet model of meconium aspiration. Pediatr Pulmonol. 2013;48(3):257-264.
van der Hoeven M, Brouwer E, Blanco CE. Nasal high frequency ventilation in neonates with moderate respiratory insufficiency. Arch Dis Child Fetal Neonatal Ed. 1998;79(1):F61-F63.
Colaizy TT, Younis UMM, Bell EF, Klein JM. Nasal high-frequency ventilation for premature infants. Acta Paediatr. 2008;97(11):1518-1522.
Urlesberger B, Brandner A, Pocivalnik M, Koestenberger M, Morris N, Pichler G. A left-to-right shunt via the ductus arteriosus is associated with increased regional cerebral oxygen saturation during neonatal transition. Neonatology. 2013;103(4):259-263.
Sivieri EM, Eichenwald E, Bakri SM, Abbasi S. Effect of high frequency oscillatory high flow nasal cannula on carbon dioxide clearance in a premature infant lung model: A bench study. Pediatr Pulmonol. 2019;54(4):436-443.
INVOS_OperatorsManual_EN_PT00055043C00.pdf. https://www.medtronic.com/content/dam/covidien/library/us/en/product/cerebral-somatic-oximetry/INVOS_OperatorsManual_EN_PT00055043C00.pdf. Accessed June 18, 2020.
Kainerstorfer JM, Sassaroli A, Tgavalekos KT, Fantini S. Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2015;35(6):959-966.
Hoffman SB, Cheng Y-J, Magder LS, Shet N, Viscardi RM. Cerebral autoregulation in premature infants during the first 96 hours of life and relationship to adverse outcomes. Arch Dis Child Fetal Neonatal Ed. 2019;104(5):F473-F479.
Tran NN, Kumar SR, Hodge FS, Macey PM. Cerebral autoregulation in neonates with and without congenital heart disease. Am J Crit Care. 2018;27(5):410-416.
Grometto A, Pluchinotta F, Gazzolo F, Strozzi MC, Gazzolo D. NIRS cerebral patterns in healthy late preterm and term infants are gender- and gestational age-dependent. Acta Paediatr. 2019;108(6):1036-1041.

Auteurs

Laurent Renesme (L)

Neonatal Intensive Care Unit, University Hospital of Bordeaux, Bordeaux, France.

Eric Dumas de la Roque (E)

Neonatal Intensive Care Unit, University Hospital of Bordeaux, Bordeaux, France.

Christine Germain (C)

Pôle de Santé Publique, Clinical Epidemiology Unit, University Hospital of Bordeaux, Bordeaux, France.

Agnès Chevrier (A)

Neonatal Intensive Care Unit, University Hospital of Bordeaux, Bordeaux, France.

Muriel Rebola (M)

Neonatal Intensive Care Unit, University Hospital of Bordeaux, Bordeaux, France.

Sophie Cramaregeas (S)

Neonatal Intensive Care Unit, University Hospital of Bordeaux, Bordeaux, France.

Antoine Benard (A)

Pôle de Santé Publique, Clinical Epidemiology Unit, University Hospital of Bordeaux, Bordeaux, France.

Christophe Elleau (C)

Neonatal Intensive Care Unit, University Hospital of Bordeaux, Bordeaux, France.

Olivier Tandonnet (O)

Neonatal Intensive Care Unit, University Hospital of Bordeaux, Bordeaux, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH