Real-world characterization of blood glucose control and insulin use in the intensive care unit.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 07 2020
01 07 2020
Historique:
received:
21
01
2020
accepted:
09
06
2020
entrez:
3
7
2020
pubmed:
3
7
2020
medline:
15
12
2020
Statut:
epublish
Résumé
The heterogeneity of critical illness complicates both clinical trial design and real-world management. This complexity has resulted in conflicting evidence and opinion regarding the optimal management in many intensive care scenarios. Understanding this heterogeneity is essential to tailoring management to individual patients. Hyperglycaemia is one such complication in the intensive care unit (ICU), accompanied by decades of conflicting evidence around management strategies. We hypothesized that analysis of highly-detailed electronic medical record (EMR) data would demonstrate that patients vary widely in their glycaemic response to critical illness and response to insulin therapy. Due to this variability, we believed that hyper- and hypoglycaemia would remain common in ICU care despite standardised approaches to management. We utilized the Medical Information Mart for Intensive Care III v1.4 (MIMIC) database. We identified 19,694 admissions between 2008 and 2012 with available glucose results and insulin administration data. We demonstrate that hyper- and hypoglycaemia are common at the time of admission and remain so 1 week into an ICU admission. Insulin treatment strategies vary significantly, irrespective of blood glucose level or diabetic status. We reveal a tremendous opportunity for EMR data to guide tailored management. Through this work, we have made available a highly-detailed data source for future investigation.
Identifiants
pubmed: 32612144
doi: 10.1038/s41598-020-67864-z
pii: 10.1038/s41598-020-67864-z
pmc: PMC7329880
doi:
Substances chimiques
Biomarkers
0
Blood Glucose
0
Glycated Hemoglobin A
0
Hypoglycemic Agents
0
Insulin
0
hemoglobin A1c protein, human
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10718Subventions
Organisme : NIDCR NIH HHS
ID : R01 DE017205
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB017205
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY017205
Pays : United States
Références
Calfee, C. S. et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir. Med. 2, 611–620 (2014).
doi: 10.1016/S2213-2600(14)70097-9
Seymour, C. W. et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA 321, 2003–2017 (2019).
doi: 10.1001/jama.2019.5791
Famous, K. R. et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am. J. Respir. Crit. Care Med. 195, 331–338 (2017).
doi: 10.1164/rccm.201603-0645OC
Prescott, H. C., Calfee, C. S., Thompson, B. T., Angus, D. C. & Liu, V. X. Toward smarter lumping and smarter splitting: rethinking strategies for sepsis and acute respiratory distress syndrome clinical trial design. Am. J. Respir. Crit. Care Med. 194, 147–155 (2016).
doi: 10.1164/rccm.201512-2544CP
Capes, S. E., Hunt, D., Malmberg, K. & Gerstein, H. C. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 355, 773–778 (2000).
doi: 10.1016/S0140-6736(99)08415-9
Bekes, C. Poor glycemic control Is associated with increased mortality in critically ill trauma patients. Yearb. Crit. Care Med. 2008, 213–215 (2008).
doi: 10.1016/S0734-3299(08)70583-5
Krinsley, J. S. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin. Proc. 78, 1471–1478 (2003).
doi: 10.4065/78.12.1471
Van den Berghe, G. et al. Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 345, 1359–1367 (2001).
doi: 10.1056/NEJMoa011300
Van den Berghe, G. et al. Intensive insulin therapy in the medical ICU. N. Engl. J. Med. 354, 449–461 (2006).
doi: 10.1056/NEJMoa052521
NICE-SUGAR Study Investigators et al. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 360, 1283–1297 (2009).
doi: 10.1056/NEJMoa0810625
Krinsley, J. S. & Grover, A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit. Care Med. 35, 2262–2267 (2007).
doi: 10.1097/01.CCM.0000282073.98414.4B
Safi, S. & White, A. The efficiency of OLS in the presence of auto-correlated disturbances in regression models. J. Mod. Appl. Stat. Methods 5, 107–117 (2006).
doi: 10.22237/jmasm/1146456540
Johnson, A. E. W. et al. MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016).
doi: 10.1038/sdata.2016.35
Pollard, T. J. & Johnson, A. E. The MIMIC-III Clinical Database (accessed 2018); https://doi.org/10.13026/C2XW26 (2016).
Johnson, A. E., Stone, D. J., Celi, L. A. & Pollard, T. J. The MIMIC code repository: enabling reproducibility in critical care research. J. Am. Med. Inform. Assoc. 25, 32–39 (2018).
doi: 10.1093/jamia/ocx084
Pollard, T. MIT-LCP/mimic-code: MIMIC-III v1.4 (Version v1.4) (accessed 2018); https://doi.org/10.5281/zenodo.821872 (2017).