The anterior and medial thalamic nuclei and the human limbic system: tracing the structural connectivity using diffusion-weighted imaging.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 07 2020
Historique:
received: 29 03 2019
accepted: 15 06 2020
entrez: 4 7 2020
pubmed: 4 7 2020
medline: 2 12 2020
Statut: epublish

Résumé

The limbic system is a phylogenetically old, behaviorally defined system that serves as a center for emotions. It controls the expression of anger, fear, and joy and also influences sexual behavior, vegetative functions, and memory. The system comprises a collection of tel-, di-, and mesencephalic structures whose components have evolved and increased over time. Previous animal research indicates that the anterior nuclear group of the thalamus (ANT), as well as the habenula (Hb) and the adjacent mediodorsal nucleus (MD) each play a vital role in the limbic circuitry. Accordingly, diffusion imaging data of 730 subjects obtained from the Human Connectome Project and the masks of six nuclei (anterodorsal, anteromedial, anteroventral, lateral dorsal, Hb, and MD) served as seed regions for a direct probabilistic tracking to the rest of the brain using diffusion-weighted imaging. The results revealed that the ANT nuclei are part of the limbic and the memory system as they mainly connect via the mammillary tract, mammillary body, anterior commissure, fornix, and retrosplenial cortices to the hippocampus, amygdala, medio-temporal, orbito-frontal and occipital cortices. Furthermore, the ANT nuclei showed connections to the mesencephalon and brainstem to varying extents, a pattern rarely described in experimental findings. The habenula-usually defined as part of the epithalamus-was closely connected to the tectum opticum and seems to serve as a neuroanatomical hub between the visual and the limbic system, brainstem, and cerebellum. Finally, in contrast to experimental findings with tracer studies, directly determined connections of MD were mainly confined to the brainstem, while indirect MD fibers form a broad pathway connecting the hippocampus and medio-temporal areas with the mediofrontal cortex.

Identifiants

pubmed: 32616764
doi: 10.1038/s41598-020-67770-4
pii: 10.1038/s41598-020-67770-4
pmc: PMC7331724
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10957

Références

Enatsu, R. et al. Connections of the limbic network: a corticocortical evoked potentials study. Cortex 62, 20–33 (2015).
pubmed: 25131616
Rolls, E. T. Limbic systems for emotion and for memory, but no single limbic system. Cortex 62, 119–157 (2015).
pubmed: 24439664
Felten, D. L., O’Banion, M. K. & Maida, M. S. (eds) Autonomic-Hypothalamic–Limbic Systems. In Netter’s Atlas of Neuroscience 421–461 (Elsevier, 2016). http://linkinghub.elsevier.com/retrieve/pii/B9780323265119000163 .
Willis, M. A. & Haines, D. E. Chapter 31—The Limbic System. In Fundamental Neuroscience for Basic and Clinical Applications 5th edn (eds Haines, D. E. & Mihailoff, G. A.) 457e1–467e1 (Elsevier, Amsterdam, 2018).
Bubb, E. J., Metzler-Baddeley, C. & Aggleton, J. P. The cingulum bundle: anatomy, function, and dysfunction. Neurosci. Biobehav. Rev. 92, 104–127 (2018).
pubmed: 6090091 pmcid: 6090091
Eckert, U. et al. Preferential networks of the mediodorsal nucleus and centromedian–parafascicular complex of the thalamus—a DTI tractography study. Hum. Brain Mapp. 33, 2627–2637 (2012).
pubmed: 21932264
Timbie, C. & Barbas, H. Pathways for emotions: specializations in the amygdalar, mediodorsal thalamic, and posterior orbitofrontal network. J. Neurosci. 35, 11976–11987 (2015).
pubmed: 26311778 pmcid: 4549406
Zahm, D. S. & Root, D. H. Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving. Pharmacol. Biochem. Behav. 162, 3–21 (2017).
pubmed: 28647565 pmcid: 5659881
Fakhoury, M. The habenula in psychiatric disorders: More than three decades of translational investigation. Neurosci. Biobehav. Rev. 83, 721–735 (2017).
pubmed: 28223096
Papez, J. W. A proposed mechanism of emotion. Arch. Neur. Psychiatry 38, 725–743 (1937).
Aggleton, J. P. et al. Hippocampal–anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur. J. Neurosci. 31, 2292–2307 (2010).
pubmed: 20550571 pmcid: 2936113
O’Mara, S. M. The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front. Syst. Neurosci. 7, 45 (2013).
pubmed: 24009563 pmcid: 3757326
Kumar, V., Mang, S. & Grodd, W. Direct diffusion-based parcellation of the human thalamus. Brain Struct. Funct. 220, 1619–1635 (2015).
pubmed: 24659254
Bentivoglio, M., Kultas-Ilinsky, K. & Ilinsky, I. Neurobiology of cingulate cortex and limbic thalamus. https://doi.org/10.1007/978-1-4899-6704-6.pdf (1993).
Jones, E. G. The Thalamus 2 Volume Set (Cambridge University Press, Cambridge, 2007).
Nieuwenhuys, R., Voogd, J., Huijzen, C. V., van Huijzen, C. & Voogd, J. The Human Central Nervous System (Springer, Berlin, 2008).
Mai, J. K. & Forutan, F. Chapter 19—Thalamus. In The Human Nervous System 3rd edn (eds Mai, J. K. & Paxinos, G.) 618–677 (Academic Press, New York, 2012).
Hodaie, M., Wennberg, R. A., Dostrovsky, J. O. & Lozano, A. M. Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia 43, 603–608 (2002).
pubmed: 12060019
Schaper, F. L. W. V. J. et al. Single-cell recordings to target the anterior nucleus of the thalamus in deep brain stimulation for patients with refractory epilepsy. Int. J. Neural Syst. https://doi.org/10.1142/S0129065718500120 (2018).
doi: 10.1142/S0129065718500120 pubmed: 29768988
Jbabdi, S., Woolrich, M. W. & Behrens, T. E. J. Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models. NeuroImage 44, 373–384 (2009).
pubmed: 18845262
Johansen-Berg, H. et al. Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb. Cortex 15, 31–39 (2005).
pubmed: 15238447
Zhang, D. et al. Intrinsic functional relations between human cerebral cortex and thalamus. J. Neurophysiol. 100, 1740–1748 (2008).
pubmed: 18701759 pmcid: 2576214
Mezer, A., Yovel, Y., Pasternak, O., Gorfine, T. & Assaf, Y. Cluster analysis of resting-state fMRI time series. NeuroImage 45, 1117–1125 (2009).
pubmed: 19146962
O’Muircheartaigh, J., Keller, S. S., Barker, G. J. & Richardson, M. P. White matter connectivity of the thalamus delineates the functional architecture of competing thalamocortical systems. Cereb. Cortex 25, 4477–4489 (2015).
pubmed: 25899706 pmcid: 4816794
Toulmin, H. et al. Specialization and integration of functional thalamocortical connectivity in the human infant. Proc. Natl. Acad. Sci. 112, 6485–6490 (2015).
pubmed: 25941391
Woodward, N. D., Karbasforoushan, H. & Heckers, S. Thalamocortical dysconnectivity in schizophrenia. Am. J. Psychiatry 169, 1092–1099 (2012).
pubmed: 23032387
Yuan, R. et al. Functional topography of the thalamocortical system in human. Brain Struct. Funct. 221, 1971–1984 (2015).
pubmed: 25924563 pmcid: 6363530
Zhang, D., Snyder, A. Z., Shimony, J. S., Fox, M. D. & Raichle, M. E. Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cereb. Cortex N. Y. 20, 1187–1194 (2010).
Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. NeuroImage 80, 62–79 (2013).
pubmed: 23684880 pmcid: 3724347
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013).
pubmed: 23668970 pmcid: 3720813
Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective. NeuroImage 62, 2222–2231 (2012).
pubmed: 22366334 pmcid: 3606888
Krauth, A. et al. A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. NeuroImage 49, 2053–2062 (2010).
pubmed: 19853042
Behrens, T. E. J. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750–757 (2003).
pubmed: 12808459
Kumar, V. J., van Oort, E., Scheffler, K., Beckmann, C. F. & Grodd, W. Functional anatomy of the human thalamus at rest. NeuroImage 147, 678–691 (2017).
pubmed: 28041978
Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).
Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).
Leemans, A. & Jones, D. K. The B-matrix must be rotated when correcting for subject motion in DTI data. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 61, 1336–1349 (2009).
Sotiropoulos, S. N. et al. Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE. Magn. Reson. Med. 70, 1682–1689 (2013).
pubmed: 23401137
Andersson, J. L. R., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20, 870–888 (2003).
Andersson, J. L. R. & Sotiropoulos, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078 (2016).
pubmed: 26481672 pmcid: 4692656
Andersson, J. L. R. & Sotiropoulos, S. N. Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes. NeuroImage 122, 166–176 (2015).
pubmed: 26236030 pmcid: 4627362
Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S. & Woolrich, M. W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?. NeuroImage 34, 144–155 (2007).
pubmed: 17070705
Hernández, M. et al. Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs. PLoS ONE 8, e61892 (2013).
pubmed: 23658616 pmcid: 3643787
Jbabdi, S., Sotiropoulos, S. N., Savio, A. M., Graña, M. & Behrens, T. E. J. Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magn. Reson. Med. 68, 1846–1855 (2012).
pubmed: 22334356 pmcid: 3359399
Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).
pubmed: 22248573 pmcid: 22248573
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).
Frazier, J. A. et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am. J. Psychiatry 162, 1256–1265 (2005).
pubmed: 15994707
Goldstein, J. M. et al. Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol. Psychiatry 61, 935–945 (2007).
pubmed: 17046727
Makris, N. et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res. 83, 155–171 (2006).
pubmed: 16448806
Eickhoff, S. B. et al. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. NeuroImage 36, 511–521 (2007).
pubmed: 17499520
Eickhoff, S. B., Heim, S., Zilles, K. & Amunts, K. Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. NeuroImage 32, 570–582 (2006).
pubmed: 16781166
Eickhoff, S. B. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25, 1325–1335 (2005).
pubmed: 15850749
Isaacson, R. L. Limbic System. in International Encyclopedia of the Social & Behavioral Sciences (eds. Smelser, N. J. & Baltes, P. B.) 8858–8862 (Pergamon, 2001). https://doi.org/10.1016/B0-08-043076-7/03477-X .
Krüger, O., Shiozawa, T., Kreifelts, B., Scheffler, K. & Ethofer, T. Three distinct fiber pathways of the bed nucleus of the stria terminalis to the amygdala and prefrontal cortex. Cortex 66, 60–68 (2015).
pubmed: 25800506
Bianco, I. H. & Wilson, S. W. The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philos. Trans. R. Soc. B Biol. Sci. 364, 1005–1020 (2009).
Lawson, R. P., Drevets, W. C. & Roiser, J. P. Defining the habenula in human neuroimaging studies. NeuroImage 64, 722–727 (2013).
pubmed: 22986224 pmcid: 3650642
Jones, E. G. (ed) The Thalamus. (Springer US, Boston, 1985). https://doi.org/10.1007/978-1-4615-1749-8 .
Hazlett, E. A. et al. Three-dimensional analysis with MRI and PET of the size, shape, and function of the thalamus in the schizophrenia spectrum. Am. J. Psychiatry 156, 1190–1199 (1999).
pubmed: 10450259
Buchmann, A. et al. Reduced mediodorsal thalamic volume and prefrontal cortical spindle activity in schizophrenia. NeuroImage 102, 540–547 (2014).
pubmed: 25139002 pmcid: 4253071
Giguere, M. & Goldman-Rakic, P. S. Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J. Comp. Neurol. 277, 195–213 (1988).
pubmed: 2466057
Fuster, J. M. The Prefrontal Cortex (Academic Press/Elsevier, New York, 2008).
Mitchell, A. S. & Chakraborty, S. What does the mediodorsal thalamus do?. Front. Syst. Neurosci. 7, 37 (2013).
pubmed: 23950738 pmcid: 3738868
Tubbs, R. S., Loukas, M., Shoja, M. M., Mortazavi, M. M. & Cohen-Gadol, A. A. Félix Vicq d’Azyr (1746–1794): early founder of neuroanatomy and royal French physician. Childs Nerv. Syst. 27, 1031–1034 (2011).
pubmed: 21445631
Rose, J. E. & Woolsey, C. N. Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat. J. Comp. Neurol. 89, 279–347 (1948).
pubmed: 18103781
Vogt, B. A. & Gabriel, M. Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook (Birkhäuser, Basel, 1993).
Pessoa, L. & Hof, P. R. From Paul Broca’s great limbic lobe to the limbic system: commentary. J. Comp. Neurol. 523, 2495–2500 (2015).
pubmed: 26103943 pmcid: 4591172
Amunts, K. et al. Broca’s region: novel organizational principles and multiple receptor mapping. PLOS Biol. 8, e1000489 (2010).
pubmed: 20877713 pmcid: 2943440
Van Groen, T. & Wyss, J. M. Projections from the anterodorsal and anteroveniral nucleus of the thalamus to the limbic cortex in the rat. J. Comp. Neurol. 358, 584–604 (1995).
pubmed: 7593752
van Groen, T., Kadish, I. & Wyss, J. M. The role of the laterodorsal nucleus of the thalamus in spatial learning and memory in the rat. Behav. Brain Res. 136, 329–337 (2002).
pubmed: 12429394
Caspers, S., Amunts, K. & Zilles, K. Chpater 28—Posterior Parietal Cortex: Multimodal Association Cortex. In The Human Nervous System 3rd edn (eds Mai, J. K. & Paxinos, G.) 1036–1055 (Academic Press, New York, 2012). https://doi.org/10.1016/B978-0-12-374236-0.10028-8 .
doi: 10.1016/B978-0-12-374236-0.10028-8
Ernandes, M. & Giammanco, S. MacLean’s triune brain and the origin of the ‘immense power being’ idea. Mank. Q. 32, 173–202 (1998).
Namboodiri, V. M. K., Rodriguez-Romaguera, J. & Stuber, G. D. The habenula. Curr. Biol. 26, R873–R877 (2016).
pubmed: 27728786
Herkenham, M. & Nauta, W. J. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J. Comp. Neurol. 173, 123–146 (1977).
Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).
Mathis, V. & Lecourtier, L. Role of the lateral habenula in memory through online processing of information. Pharmacol. Biochem. Behav. 162, 69–78 (2017).
pubmed: 28709783
Mendoza, J. Circadian neurons in the lateral habenula: Clocking motivated behaviors. Pharmacol. Biochem. Behav. 162, 55–61 (2017).
pubmed: 28666896
Ray, J. P. & Price, J. L. The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 337, 1–31 (1993).
pubmed: 7506270
Mitchell, A. S. The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci. Biobehav. Rev. 54, 76–88 (2015).
pubmed: 25757689
Wolff, M. & Vann, S. D. The Cognitive Thalamus as a gateway to mental representations. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0479-18.2018 (2018).
doi: 10.1523/JNEUROSCI.0479-18.2018 pubmed: 30389839
Schmitt, L. I. et al. Thalamic amplification of cortical connectivity sustains attentional control. Nature 545, 219–223 (2017).
pubmed: 28467827 pmcid: 5570520
Pergola, G. et al. The regulatory role of the human mediodorsal thalamus. Trends Cogn. Sci. 22, 1011–1025 (2018).
pubmed: 30236489 pmcid: 6198112
Catani, M., Dell’Acqua, F. & Thiebaut de Schotten, M. A revised limbic system model for memory, emotion and behaviour. Neurosci. Biobehav. Rev. 37, 1724–1737 (2013).
pubmed: 23850593
Gusnard, D. A., Akbudak, E., Shulman, G. L. & Raichle, M. E. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 98, 4259–4264 (2001).
pubmed: 11259662 pmcid: 31213
Northoff, G. From emotions to consciousness—a neuro-phenomenal and neuro-relational approach. Front. Psychol. 3, 303 (2012).
pubmed: 22969736 pmcid: 3431612
Raichle, M. E. et al. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 98, 676–682 (2001).
pubmed: 11209064 pmcid: 14647
Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).
Hutsler, J. J., Loftus, W. C. & Gazzaniga, M. S. Individual variation of cortical surface area asymmetries. Cereb. Cortex 8, 11–17 (1998).
pubmed: 9510381
Watkins, K. E. et al. Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. Cereb. Cortex 11, 868–877 (2001).
pubmed: 11532891
Good, C. D. et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14, 21–36 (2001).
Bajada, C. J. et al. A graded tractographic parcellation of the temporal lobe. NeuroImage 155, 503–512 (2017).
pubmed: 28411156 pmcid: 5518769
Toga, A. W., Narr, K. L., Thompson, P. M. & Luders, E. Brain Asymmetry: Evolution. In Encyclopedia of Neuroscience (ed. Squire, L. R.) 303–311 (Academic Press, New York, 2009). https://doi.org/10.1016/B978-008045046-9.00936-0 .
doi: 10.1016/B978-008045046-9.00936-0
Eidelberg, D. et al. Metabolic correlates of pallidal neuronal activity in Parkinson’s disease. Brain J. Neurol. 120(Pt 8), 1315–1324 (1997).
Willats, L. et al. Quantification of track-weighted imaging (TWI): characterisation of within-subject reproducibility and between-subject variability. NeuroImage 87, 18–31 (2014).
pubmed: 24246491
Bach, M. et al. Methodological considerations on tract-based spatial statistics (TBSS). NeuroImage 100, 358–369 (2014).
pubmed: 24945661
Kachlik, D., Musil, V. & Baca, V. Contribution to the anatomical nomenclature concerning general anatomy and anatomical variations. Surg. Radiol. Anat. 38, 757–765 (2016).
pubmed: 26946463
Ocak, M. et al. A comparison of the anatomical terminology in the last 25 years. J. Anat. Soc. India 66, S31–S33 (2017).
Gibson, W. S. et al. Anterior thalamic deep brain stimulation: functional activation patterns in a large animal model. Brain Stimul. https://doi.org/10.1016/j.brs.2016.04.012 (2016).
doi: 10.1016/j.brs.2016.04.012 pubmed: 27160467 pmcid: 5007150
Aggleton, J. P., Neave, N., Nagle, S. & Hunt, P. R. A comparison of the effects of anterior thalamic, mamillary body and fornix lesions on reinforced spatial alternation. Behav. Brain Res. 68, 91–101 (1995).
pubmed: 7619309
Child, N. D. & Benarroch, E. E. Anterior nucleus of the thalamus: functional organization and clinical implications. Neurology 81, 1869–1876 (2013).
pubmed: 24142476
Dillingham, C. M., Frizzati, A., Nelson, A. J. D. & Vann, S. D. How do mammillary body inputs contribute to anterior thalamic function?. Neurosci. Biobehav. Rev. 54, 108–119 (2015).
pubmed: 25107491 pmcid: 4462591
Kötter, R. & Meyer, N. The limbic system: a review of its empirical foundation. Behav. Brain Res. 52, 105–127 (1992).
pubmed: 1294190
LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).
LeDoux, J. E. Evolution of Human Emotion: A View Through Fear. In Progress in Brain Research Vol. 195 (eds Hofman, M. A. & Falk, D.) 431–442 (Elsevier, Amsterdam, 2012).
Taube, J. S. The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci. 30, 181–207 (2007).
pubmed: 17341158
Granziera, C. et al. In-vivo magnetic resonance imaging of the structural core of the Papez circuit in humans. NeuroReport 22, 227–231 (2011).
pubmed: 21346644
Shah, A., Jhawar, S. S. & Goel, A. Analysis of the anatomy of the Papez circuit and adjoining limbic system by fiber dissection techniques. J. Clin. Neurosci. 19, 289–298 (2012).
pubmed: 22209397
Maclean, P. D. Psychosomatic disease and the ‘visceral brain’ recent developments bearing on the Papez theory of emotion. Psychosom. Med. 11, 338–353 (1949).
pubmed: 15410445
MacLean, P. D. Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr. Clin. Neurophysiol. 4, 407–418 (1952).
pubmed: 12998590
Yakovlev, P. I. Motility, behavior and the brain. Stereodynamic organization and neural coordinates of behavior. J. Nerv. Ment. Dis. 107, 313–335 (1948).
pubmed: 18913439
Hikosaka, O., Sesack, S. R., Lecourtier, L. & Shepard, P. D. Habenula: crossroad between the basal ganglia and the limbic system. J. Neurosci. 28, 11825–11829 (2008).
pubmed: 19005047 pmcid: 2613689
Jesuthasan, S. The thalamo-habenula projection revisited. Semin. Cell Dev. Biol. 78, 116–119 (2018).
pubmed: 28803896
Fakhoury, M. The dorsal diencephalic conduction system in reward processing: Spotlight on the anatomy and functions of the habenular complex. Behav. Brain Res. 348, 115–126 (2018).
pubmed: 29684476
Goldman-Rakic, P. S. & Porrino, L. J. The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J. Comp. Neurol. 242, 535–560 (1985).
pubmed: 2418080
Baxter, M. G. Mediodorsal thalamus and cognition in non-human primates. Front. Syst. Neurosci. 7, 38 (2013).
pubmed: 23964206 pmcid: 3734369
Vertes, R. P., Linley, S. B. & Hoover, W. B. Limbic circuitry of the midline thalamus. Neurosci. Biobehav. Rev. 54, 89–107 (2015).
pubmed: 25616182 pmcid: 4976455

Auteurs

Wolfgang Grodd (W)

Department of Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Ring 11, 72076, Tübingen, Germany. Wolfgang.Grodd@tuebingen.mpg.de.

Vinod Jangir Kumar (VJ)

Department of Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Ring 11, 72076, Tübingen, Germany.

Almut Schüz (A)

Department of Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Ring 11, 72076, Tübingen, Germany.

Tobias Lindig (T)

Department of Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Ring 11, 72076, Tübingen, Germany.
Department of Neuroradiology, University Clinic Tübingen, Tübingen, Germany.

Klaus Scheffler (K)

Department of Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Ring 11, 72076, Tübingen, Germany.
Department of Biomedical Magnetic Resonance, University Clinic Tübingen, Tübingen, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH