The induction and function of the anti-inflammatory fate of T


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
03 07 2020
Historique:
received: 03 10 2019
accepted: 11 06 2020
entrez: 5 7 2020
pubmed: 6 7 2020
medline: 1 9 2020
Statut: epublish

Résumé

T

Identifiants

pubmed: 32620760
doi: 10.1038/s41467-020-17097-5
pii: 10.1038/s41467-020-17097-5
pmc: PMC7335205
doi:

Substances chimiques

Interleukin-17 0
Transforming Growth Factor beta 0
Interleukin-10 130068-27-8

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3334

Subventions

Organisme : NCATS NIH HHS
ID : UL1 TR001863
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States

Références

Curtis, M. M. & Way, S. S. Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology 126, 177–185 (2009).
pubmed: 19125888 pmcid: 2632692
Zhang, S. et al. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature 551, 105–109 (2017).
pubmed: 29072299 pmcid: 5743442
Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).
pubmed: 21350122 pmcid: 3070042
Holland, S. M. et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med 357, 1608–1619 (2007).
pubmed: 17881745
Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).
pubmed: 19776401 pmcid: 2965730
Esplugues, E. et al. Control of TH17 cells occurs in the small intestine. Nature 475, 514–518 (2011).
pubmed: 21765430 pmcid: 3148838
Gagliani, N. et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015).
pubmed: 25924064 pmcid: 4498984
Omenetti, S. et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 Cells. Immunity 51, 77–89 e76 (2019).
pubmed: 31229354 pmcid: 6642154
Mangan, P. R. et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441, 231–234 (2006).
pubmed: 16648837
Zhou, L. et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).
pubmed: 17581537
Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8, 942–949 (2007).
pubmed: 17676045
Wilson, N. J. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol. 8, 950–957 (2007).
pubmed: 17676044
Xu, J. et al. c-Maf regulates IL-10 expression during Th17 polarization. J. Immunol. 182, 6226–6236 (2009).
pubmed: 19414776 pmcid: 2834209
Chang, K. K. et al. IL-27 triggers IL-10 production in Th17 cells via a c-Maf/RORgammat/Blimp-1 signal to promote the progression of endometriosis. Cell Death Dis. 8, e2666 (2017).
pubmed: 28300844 pmcid: 5386585
Gabrysova, L. et al. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4(+) T cells. Nat. Immunol. 19, 497–507 (2018).
pubmed: 29662170 pmcid: 5988041
Aschenbrenner, D. et al. An immunoregulatory and tissue-residency program modulated by c-MAF in human TH17 cells. Nat. Immunol. 19, 1126–1136 (2018).
pubmed: 30201991 pmcid: 6402560
McGeachy, M. J. et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).
pubmed: 17994024
Martinez, G. J. et al. Smad2 positively regulates the generation of Th17 cells. The. J. Biol. Chem. 285, 29039–29043 (2010).
pubmed: 20667820 pmcid: 2937933
Martinez, G. J. et al. Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation. J. Biol. Chem. 284, 35283–35286 (2009).
pubmed: 19887374 pmcid: 2790957
Xi, Q. et al. A poised chromatin platform for TGF-beta access to master regulators. Cell 147, 1511–1524 (2011).
pubmed: 22196728 pmcid: 3582033
He, W. et al. Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell 125, 929–941 (2006).
pubmed: 16751102
Tanaka, S. et al. Trim33 mediates the proinflammatory function of Th17 cells. J. Exp. Med 215, 1853–1868 (2018).
pubmed: 29930104 pmcid: 6028517
Uhlig, H. H. et al. Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J. Immunol. 177, 5852–5860 (2006).
pubmed: 17056509 pmcid: 6108413
Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).
pubmed: 20566854
Huber, S. et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3(−) and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity 34, 554–565 (2011).
pubmed: 21511184 pmcid: 3113617
Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 484, 514–518 (2012).
pubmed: 22466287
Chatenoud, L. & Bluestone, J. A. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat. Rev. Immunol. 7, 622–632 (2007).
pubmed: 17641665
Rutz, S. et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature 518, 417–421 (2015).
pubmed: 25470037
Karmaus, P. W. F. et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature 565, 101–105 (2019).
pubmed: 30568299
Weaver, C. T., Elson, C. O., Fouser, L. A. & Kolls, J. K. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu. Rev. Pathol. 8, 477–512 (2013).
pubmed: 23157335
Turner, J. E., Paust, H. J., Steinmetz, O. M. & Panzer, U. The Th17 immune response in renal inflammation. Kidney Int. 77, 1070–1075 (2010).
pubmed: 20375986
Tesmer, L. A., Lundy, S. K., Sarkar, S. & Fox, D. A. Th17 cells in human disease. Immunol. Rev. 223, 87–113 (2008).
pubmed: 18613831 pmcid: 3299089
Roncarolo, M. G., Gregori, S., Bacchetta, R., Battaglia, M. & Gagliani, N. The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity 49, 1004–1019 (2018).
pubmed: 30566879
Yang, B. H. et al. Foxp3(+) T cells expressing RORgammat represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 9, 444–457 (2016).
pubmed: 26307665
Sefik, E. et al. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 349, 993–997 (2015).
pubmed: 26272906 pmcid: 4700932
Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. J. Exp. Med. 205, 1381–1393 (2008).
pubmed: 18504307 pmcid: 2413035
Ghoreschi, K. et al. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467, 967–971 (2010).
pubmed: 20962846 pmcid: 3108066
Delisle, J. S. et al. The TGF-beta-Smad3 pathway inhibits CD28-dependent cell growth and proliferation of CD4 T cells. Genes Immun. 14, 115–126 (2013).
pubmed: 23328844
Neumann, C. et al. Role of Blimp-1 in programing Th effector cells into IL-10 producers. J. Exp. Med 211, 1807–1819 (2014).
pubmed: 25073792 pmcid: 4144744
Huss, D. J. et al. TGF-beta signaling via Smad4 drives IL-10 production in effector Th1 cells and reduces T-cell trafficking in EAE. Eur. J. Immunol. 41, 2987–2996 (2011).
pubmed: 21728174 pmcid: 3478765
Huss, D. J. et al. TGF-beta enhances effector Th1 cell activation but promotes self-regulation via IL-10. J. Immunol. 184, 5628–5636 (2010).
pubmed: 20393141 pmcid: 3804066
Salehi, S. et al. B lymphocyte-induced maturation protein-1 contributes to intestinal mucosa homeostasis by limiting the number of IL-17-producing CD4+ T cells. J. Immunol. 189, 5682–5693 (2012).
pubmed: 23162130 pmcid: 3529138
Chu, G. C., Dunn, N. R., Anderson, D. C., Oxburgh, L. & Robertson, E. J. Differential requirements for Smad4 in TGFbeta-dependent patterning of the early mouse embryo. Development 131, 3501–3512 (2004).
pubmed: 15215210
Kim, J. & Kaartinen, V. Generation of mice with a conditional allele for Trim33. Genesis 46, 329–333 (2008).
pubmed: 18543301 pmcid: 2504017
Lefrancois, L. & Lycke, N. Isolation of mouse small intestinal intraepithelial lymphocytes, Peyer’s patch, and lamina propria cells. Curr. Protoc. Immunol. https://doi.org/10.1002/0471142735.im0319s17 (2001).
Perez, L. G. et al. TGF-beta signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer. Nat. Commun. 11, 2608 (2020).
pubmed: 32451418 pmcid: 7248087

Auteurs

Hao Xu (H)

Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA.

Theodora Agalioti (T)

Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.

Jun Zhao (J)

Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA.

Babett Steglich (B)

I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.

Ramez Wahib (R)

Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.

Maria Carolina Amezcua Vesely (MCA)

Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA.

Piotr Bielecki (P)

Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA.

Will Bailis (W)

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.

Ruaidhri Jackson (R)

Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA.

Daniel Perez (D)

Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.

Jakob Izbicki (J)

Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.

Paula Licona-Limón (P)

Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F, México.

Vesa Kaartinen (V)

Biologic and Material Sciences, University of Michigan, 1011N. University Ave, Ann Arbor, MI, 48109, USA.

Jens Geginat (J)

INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.
Department of Clinical Sciences and Community Health, Università degli studi di Milano, Milan, Italy.

Enric Esplugues (E)

Laboratory of Molecular and Cellular Immunology, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain.

Eva Tolosa (E)

Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.

Samuel Huber (S)

I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.

Richard A Flavell (RA)

Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA. richard.flavell@yale.edu.
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA. richard.flavell@yale.edu.

Nicola Gagliani (N)

Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany. n.gagliani@uke.de.
I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany. n.gagliani@uke.de.
Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden. n.gagliani@uke.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH