Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
03 07 2020
Historique:
received: 25 09 2019
accepted: 18 02 2020
entrez: 5 7 2020
pubmed: 6 7 2020
medline: 29 8 2020
Statut: epublish

Résumé

Mammalian DNA methylation patterns are established by two de novo DNA methyltransferases, DNMT3A and DNMT3B, which exhibit both redundant and distinctive methylation activities. However, the related molecular basis remains undetermined. Through comprehensive structural, enzymology and cellular characterization of DNMT3A and DNMT3B, we here report a multi-layered substrate-recognition mechanism underpinning their divergent genomic methylation activities. A hydrogen bond in the catalytic loop of DNMT3B causes a lower CpG specificity than DNMT3A, while the interplay of target recognition domain and homodimeric interface fine-tunes the distinct target selection between the two enzymes, with Lysine 777 of DNMT3B acting as a unique sensor of the +1 flanking base. The divergent substrate preference between DNMT3A and DNMT3B provides an explanation for site-specific epigenomic alterations seen in ICF syndrome with DNMT3B mutations. Together, this study reveals distinctive substrate-readout mechanisms of the two DNMT3 enzymes, implicative of their differential roles during development and pathogenesis.

Identifiants

pubmed: 32620778
doi: 10.1038/s41467-020-17109-4
pii: 10.1038/s41467-020-17109-4
pmc: PMC7335073
doi:

Substances chimiques

DNMT3A protein, human 0
Dnmt3a protein, mouse 0
DNA (Cytosine-5-)-Methyltransferases EC 2.1.1.37
DNA Methyltransferase 3A EC 2.1.1.37

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3355

Subventions

Organisme : NIEHS NIH HHS
ID : R21 ES025392
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA215284
Pays : United States
Organisme : NIEHS NIH HHS
ID : R35 ES031707
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016086
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM119721
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA211336
Pays : United States

Références

Bergman, Y. & Cedar, H. DNA methylation dynamics in health and disease. Nat. Struct. Mol. Biol. 20, 274–281 (2013).
pubmed: 23463312 doi: 10.1038/nsmb.2518
Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).
pubmed: 22641018 doi: 10.1038/nrg3230
Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).
pubmed: 20142834 pmcid: 3034103 doi: 10.1038/nrg2719
Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).
pubmed: 19829295 pmcid: 2857523 doi: 10.1038/nature08514
Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).
pubmed: 10555141 doi: 10.1016/S0092-8674(00)81656-6
Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).
pubmed: 11719692 doi: 10.1126/science.1065848
Chedin, F., Lieber, M. R. & Hsieh, C. L. The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc. Natl Acad. Sci. USA 99, 16916–16921 (2002).
pubmed: 12481029 doi: 10.1073/pnas.262443999 pmcid: 139244
Hata, K., Okano, M., Lei, H. & Li, E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983–1993 (2002).
pubmed: 11934864 doi: 10.1242/dev.129.8.1983
Gowher, H. & Jeltsch, A. Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. J. Mol. Biol. 309, 1201–1208 (2001).
pubmed: 11399089 doi: 10.1006/jmbi.2001.4710
He, Y. & Ecker, J. R. Non-CG methylation in the human genome. Annu. Rev. Genomics Hum. Genet. 16, 55–77 (2015).
pubmed: 26077819 pmcid: 4729449 doi: 10.1146/annurev-genom-090413-025437
Ramsahoye, B. H. et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl Acad. Sci. USA 97, 5237–5242 (2000).
pubmed: 10805783 doi: 10.1073/pnas.97.10.5237 pmcid: 25812
Barres, R. et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 10, 189–198 (2009).
pubmed: 19723495 doi: 10.1016/j.cmet.2009.07.011
Guo, J. U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 17, 215–222 (2014).
pubmed: 24362762 doi: 10.1038/nn.3607
Ma, H. et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511, 177–183 (2014).
pubmed: 25008523 pmcid: 4898064 doi: 10.1038/nature13551
Gowher, H. & Jeltsch, A. Mammalian DNA methyltransferases: new discoveries and open questions. Biochemical Soc. Trans. 46, 1191–1202 (2018).
doi: 10.1042/BST20170574
Jeltsch, A. & Jurkowska, R. Z. Allosteric control of mammalian DNA methyltransferases—a new regulatory paradigm. Nucleic Acids Res. 44, 8556–8575 (2016).
pubmed: 27521372 pmcid: 5062992 doi: 10.1093/nar/gkw723
Chen, T., Ueda, Y., Dodge, J. E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell Biol. 23, 5594–5605 (2003).
pubmed: 12897133 pmcid: 166327 doi: 10.1128/MCB.23.16.5594-5605.2003
Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).
pubmed: 25607372 doi: 10.1038/nature14176
Challen, G. A. et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15, 350–364 (2014).
pubmed: 25130491 pmcid: 4163922 doi: 10.1016/j.stem.2014.06.018
Yang, L., Rau, R. & Goodell, M. A. DNMT3A in haematological malignancies. Nat. Rev. Cancer 15, 152–165 (2015).
pubmed: 25693834 pmcid: 5814392 doi: 10.1038/nrc3895
Tatton-Brown, K. et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46, 385–388 (2014).
pubmed: 24614070 pmcid: 3981653 doi: 10.1038/ng.2917
Hansen, R. S. et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl Acad. Sci. USA 96, 14412–14417 (1999).
pubmed: 10588719 doi: 10.1073/pnas.96.25.14412 pmcid: 24450
Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).
pubmed: 10647011 doi: 10.1038/46052
Ehrlich, M. et al. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity 41, 253–271 (2008).
pubmed: 18432406 pmcid: 2430169 doi: 10.1080/08916930802024202
Aoki, A. et al. Enzymatic properties of de novo-type mouse DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 29, 3506–3512 (2001).
pubmed: 11522819 pmcid: 55888 doi: 10.1093/nar/29.17.3506
Gowher, H. & Jeltsch, A. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J. Biol. Chem. 277, 20409–20414 (2002).
pubmed: 11919202 doi: 10.1074/jbc.M202148200
Hsieh, C. L. In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol. Cell Biol. 19, 8211–8218 (1999).
pubmed: 10567546 pmcid: 84905 doi: 10.1128/MCB.19.12.8211
Suetake, I., Miyazaki, J., Murakami, C., Takeshima, H. & Tajima, S. Distinct enzymatic properties of recombinant mouse DNA methyltransferases Dnmt3a and Dnmt3b. J. Biochem. 133, 737–744 (2003).
pubmed: 12869530 doi: 10.1093/jb/mvg095
Handa, V. & Jeltsch, A. Profound flanking sequence preference of Dnmt3a and Dnmt3b mammalian DNA methyltransferases shape the human epigenome. J. Mol. Biol. 348, 1103–1112 (2005).
pubmed: 15854647 doi: 10.1016/j.jmb.2005.02.044
Jurkowska, R. Z., Siddique, A. N., Jurkowski, T. P. & Jeltsch, A. Approaches to enzyme and substrate design of the murine Dnmt3a DNA methyltransferase. ChemBioChem 12, 1589–1594 (2011).
pubmed: 21400651 doi: 10.1002/cbic.201000673
Lin, I. G., Han, L., Taghva, A., O’Brien, L. E. & Hsieh, C. L. Murine de novo methyltransferase Dnmt3a demonstrates strand asymmetry and site preference in the methylation of DNA in vitro. Mol. Cell Biol. 22, 704–723 (2002).
pubmed: 11784849 pmcid: 133553 doi: 10.1128/MCB.22.3.704-723.2002
Wienholz, B. L. et al. DNMT3L modulates significant and distinct flanking sequence preference for DNA methylation by DNMT3A and DNMT3B in vivo. PLoS Genet. 6, e1001106 (2010).
pubmed: 20838592 pmcid: 2936528 doi: 10.1371/journal.pgen.1001106
Zhang, Z. M. et al. Structural basis for DNMT3A-mediated de novo DNA methylation. Nature 554, 387–391 (2018).
pubmed: 29414941 pmcid: 5814352 doi: 10.1038/nature25477
Emperle, M. et al. The DNMT3A R882H mutation does not cause dominant negative effects in purified mixed DNMT3A/R882H complexes. Sci. Rep. 8, 13242 (2018).
pubmed: 30185810 pmcid: 6125428 doi: 10.1038/s41598-018-31635-8
Prosser, J., Frommer, M., Paul, C. & Vincent, P. C. Sequence relationships of three human satellite DNAs. J. Mol. Biol. 187, 145–155 (1986).
pubmed: 3701863 doi: 10.1016/0022-2836(86)90224-X
Laurent, L. et al. Dynamic changes in the human methylome during differentiation. Genome Res. 20, 320–331 (2010).
pubmed: 20133333 pmcid: 2840979 doi: 10.1101/gr.101907.109
Lee, J. H., Park, S. J. & Nakai, K. Differential landscape of non-CpG methylation in embryonic stem cells and neurons caused by DNMT3s. Sci. Rep. 7, 11295 (2017).
pubmed: 28900200 pmcid: 5595995 doi: 10.1038/s41598-017-11800-1
Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).
pubmed: 23828890 pmcid: 3785061 doi: 10.1126/science.1237905
Xie, W. et al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 148, 816–831 (2012).
pubmed: 22341451 pmcid: 3343639 doi: 10.1016/j.cell.2011.12.035
Ziller, M. J. et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet. 7, e1002389 (2011).
pubmed: 22174693 pmcid: 3234221 doi: 10.1371/journal.pgen.1002389
Guo, X. et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517, 640–644 (2015).
Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A. & Cheng, X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248–251 (2007).
pubmed: 17713477 pmcid: 2712830 doi: 10.1038/nature06146
Xie, Z. H. et al. Mutations in DNA methyltransferase DNMT3B in ICF syndrome affect its regulation by DNMT3L. Hum. Mol. Genet. 15, 1375–1385 (2006).
pubmed: 16543361 doi: 10.1093/hmg/ddl059
Rohs, R. et al. Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem. 79, 233–269 (2010).
pubmed: 20334529 pmcid: 3285485 doi: 10.1146/annurev-biochem-060408-091030
Veland, N. et al. DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells. Nucleic Acids Res. 47, 152–167 (2019).
Emperle, M., Rajavelu, A., Reinhardt, R., Jurkowska, R. Z. & Jeltsch, A. Cooperative DNA binding and protein/DNA fiber formation increases the activity of the Dnmt3a DNA methyltransferase. J. Biol. Chem. 289, 29602–29613 (2014).
pubmed: 25147181 pmcid: 4207976 doi: 10.1074/jbc.M114.572032
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol. 276, 307–326 (1997).
doi: 10.1016/S0076-6879(97)76066-X
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr 40, 658–674 (2007).
pubmed: 19461840 pmcid: 2483472 doi: 10.1107/S0021889807021206
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D. Biol. Crystallogr 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D. Biol. Crystallogr 58, 1948–1954 (2002).
pubmed: 12393927 doi: 10.1107/S0907444902016657
Emperle, M. et al. The DNMT3A R882H mutant displays altered flanking sequence preferences. Nucleic Acids Res. 46, 3130–3139 (2018).
pubmed: 29518238 pmcid: 5887309 doi: 10.1093/nar/gky168
Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).
pubmed: 29790989 pmcid: 6030816 doi: 10.1093/nar/gky379
Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).
pubmed: 21493656 pmcid: 3102221 doi: 10.1093/bioinformatics/btr167
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
pubmed: 19261174 pmcid: 2690996 doi: 10.1186/gb-2009-10-3-r25
Zhou, L. et al. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol. 321, 591–599 (2002).
pubmed: 12206775 pmcid: 2713825 doi: 10.1016/S0022-2836(02)00676-9

Auteurs

Linfeng Gao (L)

Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA.

Max Emperle (M)

Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.

Yiran Guo (Y)

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

Sara A Grimm (SA)

Division of Intramural Research, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.

Wendan Ren (W)

Department of Biochemistry, University of California, Riverside, CA, 92521, USA.

Sabrina Adam (S)

Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.

Hidetaka Uryu (H)

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.

Zhi-Min Zhang (ZM)

Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.

Dongliang Chen (D)

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

Jiekai Yin (J)

Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA.

Michael Dukatz (M)

Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.

Hiwot Anteneh (H)

Department of Biochemistry, University of California, Riverside, CA, 92521, USA.

Renata Z Jurkowska (RZ)

Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.

Jiuwei Lu (J)

Department of Biochemistry, University of California, Riverside, CA, 92521, USA.

Yinsheng Wang (Y)

Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA.
Department of Chemistry, University of California, Riverside, CA, 92521, USA.

Pavel Bashtrykov (P)

Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.

Paul A Wade (PA)

Division of Intramural Research, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.

Gang Greg Wang (GG)

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA. greg_wang@med.unc.edu.
Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. greg_wang@med.unc.edu.
Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. greg_wang@med.unc.edu.

Albert Jeltsch (A)

Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany. albert.jeltsch@ibtb.uni-stuttgart.de.

Jikui Song (J)

Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA. jikui.song@ucr.edu.
Department of Biochemistry, University of California, Riverside, CA, 92521, USA. jikui.song@ucr.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH