Predicting and affecting response to cancer therapy based on pathway-level biomarkers.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
03 07 2020
Historique:
received: 05 10 2019
accepted: 12 06 2020
entrez: 5 7 2020
pubmed: 6 7 2020
medline: 1 9 2020
Statut: epublish

Résumé

Identifying robust, patient-specific, and predictive biomarkers presents a major obstacle in precision oncology. To optimize patient-specific therapeutic strategies, here we couple pathway knowledge with large-scale drug sensitivity, RNAi, and CRISPR-Cas9 screening data from 460 cell lines. Pathway activity levels are found to be strong predictive biomarkers for the essentiality of 15 proteins, including the essentiality of MAD2L1 in breast cancer patients with high BRCA-pathway activity. We also find strong predictive biomarkers for the sensitivity to 31 compounds, including BCL2 and microtubule inhibitors (MTIs). Lastly, we show that Bcl-xL inhibition can modulate the activity of a predictive biomarker pathway and re-sensitize lung cancer cells and tumors to MTI therapy. Overall, our results support the use of pathways in helping to achieve the goal of precision medicine by uncovering dozens of predictive biomarkers.

Identifiants

pubmed: 32620799
doi: 10.1038/s41467-020-17090-y
pii: 10.1038/s41467-020-17090-y
pmc: PMC7335104
doi:

Substances chimiques

Antineoplastic Agents 0
BRCA1 Protein 0
BRCA1 protein, human 0
BRCA2 Protein 0
BRCA2 protein, human 0
Biomarkers, Tumor 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3296

Références

Berger, M. F. & Mardis, E. R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 15, 353–365 (2018).
pubmed: 29599476 pmcid: 6658089
Lee, E., Chuang, H.-Y., Kim, J.-W., Ideker, T. & Lee, D. Inferring pathway activity toward precise disease classification. PLoS Comput. Biol. 4, e1000217 (2008).
pubmed: 18989396 pmcid: 2563693
Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949 (2002).
pubmed: 12068308
Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).
pubmed: 16273091
McArthur, G. A. et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 15, 323–332 (2014).
pubmed: 24508103 pmcid: 4382632
Azuaje, F., Zheng, H., Camargo, A. & Wang, H. Systems-based biological concordance and predictive reproducibility of gene set discovery methods in cardiovascular disease. J. Biomed. Inform. 44, 637–647 (2011).
pubmed: 21315182
Luo, J. et al. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J. 10, 278–291 (2010).
pubmed: 20676067 pmcid: 2920074
Marianthi Markatou, Q. L. Evaluation of Methods in Removing Batch Effects on RNA-seq Data, http://www.tran-med.com/EN/abstract/abstract24.shtml (2016). Available at, http://www.tran-med.com/article/2016/2411-2917-2-1-3.html . (Accessed: 22nd February 2018).
An, J. Y. & Claudianos, C. Genetic heterogeneity in autism: from single gene to a pathway perspective. Neurosci. Biobehav. Rev. 68, 442–453 (2016).
pubmed: 27317861
Chen, J. C. et al. Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks. Cell 166, 1055 (2016).
pubmed: 27518566
Dalby, A. & Bailey, I. The robustness of pathway analysis in identifying potential drug targets in non-small cell lung carcinoma. Microarrays 3, 212–225 (2014).
pubmed: 27600345 pmcid: 4979055
Teschendorff, A. E. et al. Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules. BMC Cancer 10, 604 (2010).
pubmed: 21050467 pmcid: 2991308
Anastas, J. N. & Moon, R. T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11–26 (2013).
pubmed: 23258168
Efroni, S., Schaefer, C. F. & Buetow, K. H. Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS ONE 2, e425 (2007).
pubmed: 17487280 pmcid: 1855990
Emmert-Streib, F., Tripathi, S. & de Matos Simoes, R. Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods. Biol. Direct 7, 44 (2012).
pubmed: 23227854 pmcid: 3769148
Khatri, P., Sirota, M. & Butte, A. J. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol. 8, e1002375 (2012).
pubmed: 22383865 pmcid: 3285573
Wilke, R. A., Mareedu, R. K. & Moore, J. H. The pathway less traveled: moving from candidate genes to candidate pathways in the analysis of genome-wide data from large scale pharmacogenetic association studies. Curr. Pharmacogenomics Pers. Med. 6, 150–159 (2008).
Ben-Hamo, R. & Efroni, S. Gene expression and network-based analysis reveals a novel role for hsa-miR-9 and drug control over the p38 network in glioblastoma multiforme progression. Genome Med 3, 77 (2011).
pubmed: 22122801 pmcid: 3308032
Ben-Hamo, R. & Efroni, S. Biomarker robustness reveals the PDGF network as driving disease outcome in ovarian cancer patients in multiple studies. BMC Syst. Biol. 6, 3 (2012).
pubmed: 22236809 pmcid: 3298526
Su, J., Yoon, B.-J. & Dougherty, E. R. Accurate and reliable cancer classification based on probabilistic inference of pathway activity. PLoS ONE 4, e8161 (2009).
Haider, S. et al. Pathway-based subnetworks enable cross-disease biomarker discovery. Nat. Commun. 9, 4746 (2018).
Kim, S., Kon, M. & DeLisi, C. Pathway-based classification of cancer subtypes. Biol. Direct 7, 21 (2012).
pubmed: 22759382 pmcid: 3485163
Greenblum, S. I., Efroni, S., Schaefer, C. F. & Buetow, K. H. The PathOlogist: an automated tool for pathway-centric analysis. BMC Bioinforma. 12, 133 (2011).
Rees, M. G. et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol. 12, 109–116 (2016).
pubmed: 26656090
Yang, W. et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41, D955–D961 (2013).
pubmed: 23180760
Schaefer, C. F. et al. PID: the pathway interaction database. Nucleic Acids Res. 37, D674–D679 (2009).
pubmed: 18832364
Thorn, C. F., Klein, T. E. & Altman, R. B. PharmGKB: the pharmacogenomics knowledge base. Methods Mol. Biol.1015, 311–320 (2013).
pubmed: 23824865 pmcid: 4084821
Slenter, D. N. et al. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 46, D661–D667 (2018).
pubmed: 29136241
Fazekas, D. et al. SignaLink 2—a signaling pathway resource with multi-layered regulatory networks. BMC Syst. Biol. 7, 7 (2013).
pubmed: 23331499 pmcid: 3599410
Iorio, F. et al. A Landscape of pharmacogenomic interactions in. Cancer Cell 166, 740–754 (2016).
Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151–1161 (2013).
pubmed: 23993102 pmcid: 3954635
Barretina, J. et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).
pubmed: 22460905 pmcid: 3320027
Maaten, Lvander & Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).
Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974).
Dunn, J. C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cyber. 3, 32–57 (1973).
Cowley, G. S. et al. Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci. Data 1, 140035 (2014).
pubmed: 25984343 pmcid: 4432652
Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).
pubmed: 29083409 pmcid: 5709193
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).
pubmed: 28753430 pmcid: 5667678
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).
pubmed: 21546393 pmcid: 3106198
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
Johannessen, C. M. et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138–142 (2013).
pubmed: 24185007 pmcid: 4098832
Flockhart, R. J., Armstrong, J. L., Reynolds, N. J. & Lovat, P. E. NFAT signalling is a novel target of oncogenic BRAF in metastatic melanoma. Br. J. Cancer 101, 1448–1455 (2009).
pubmed: 19724275 pmcid: 2768445
Montero, J. & Letai, A. Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ. 25, 56–64 (2018).
Lin, J. X. & Leonard, W. J. The role of Stat5a and Stat5b in signaling by IL-2 family cytokines. Oncogene 19, 2566–2576 (2000).
pubmed: 10851055
Liao, Z. & Nevalainen, M. T. Targeting transcription factor Stat5a/b as a therapeutic strategy for prostate cancer. Am. J. Transl. Res. 3, 133–138 (2011).
Li, H. et al. Activation of signal transducer and activator of transcription 5 in human prostate cancer is associated with high histological grade. Cancer Res. 64, 4774–4782 (2004).
pubmed: 15256446
Nevalainen, M. T. et al. Signal transducer and activator of transcription-5 activation and breast cancer prognosis. J. Clin. Oncol. J. Am. Soc. Clin. Oncol. 22, 2053–2060 (2004).
Hsiao, J.-R. et al. Constitutive activation of STAT3 and STAT5 is present in the majority of nasopharyngeal carcinoma and correlates with better prognosis. Br. J. Cancer 89, 344–349 (2003).
pubmed: 12865928 pmcid: 2394270
Xi, S., Zhang, Q., Gooding, W. E., Smithgall, T. E. & Grandis, J. R. Constitutive activation of Stat5b contributes to carcinogenesis in vivo. Cancer Res. 63, 6763–6771 (2003).
pubmed: 14583472
Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).
pubmed: 18451170
van Delft, M. F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10, 389–399 (2006).
pubmed: 17097561 pmcid: 2953559
Jordan, M. A. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer. 4, 253–265 (2004).
Parker, A. L., Kavallaris, M. & McCarroll, J. A. Microtubules and their role in cellular stress in cancer. Front. Oncol. 4, 153 (2014).
Pasquier, E. & Kavallaris, M. Microtubules: a dynamic target in cancer therapy. IUBMB Life 60, 165–170 (2016).
Rowinsky, E. K. & Donehower, R. C. Paclitaxel (Taxol). N. Engl. J. Med. 332, 1004–1014 (1995).
pubmed: 7885406
Dumontet, C. & Jordan, M. A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 9, 790–803 (2010).
pubmed: 20885410 pmcid: 3194401
Perez, E. A. Microtubule inhibitors: differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol. Cancer Ther. 8, 2086–2095 (2009).
pubmed: 19671735
Whitaker, R. H. & Placzek, W. J. Regulating the BCL2 family to improve sensitivity to microtubule targeting agents. Cells 8, 346 (2019).
Luo, B. et al. Highly parallel identification of essential genes in cancer cells. Proc. Natl Acad. Sci. USA 105, 20380–20385 (2008).
pubmed: 19091943
Luo, J. et al. A Genome-wide RNAi Screen Identifies Multiple Synthetic Lethal Interactions with the Ras Oncogene. Cell 137, 835–848 (2009).
pubmed: 19490893 pmcid: 2768667
MacKeigan, J. P., Murphy, L. O. & Blenis, J. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat. Cell Biol. 7, 591–600 (2005).
pubmed: 15864305
Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver. Cancer Cell 135, 852–864 (2008).
Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).
pubmed: 21814200 pmcid: 3328300
Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511 (2019).
pubmed: 30971826
Garcia-Alonso, L. et al. Transcription factor activities enhance markers of drug sensitivity in cancer. Cancer Res. 78, 769–780 (2018).
pubmed: 29229604
Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).
pubmed: 22113612 pmcid: 3266695
Royle, S. J., Bright, N. A. & Lagnado, L. Clathrin is required for the function of the mitotic spindle. Nature 434, 1152–1157 (2005).
pubmed: 15858577 pmcid: 3492753
Zhao, J. et al. Clathrin heavy chain 1 is required for spindle assembly and chromosome congression in mouse oocytes. Microsc. Microanal. 19, 1364–1373 (2013).
pubmed: 23816345
Bond, M. J. et al. Spindle assembly disruption and cancer cell apoptosis with a CLTC-binding compound. Mol. Cancer Res. 16, 1361–1372 (2018).
pubmed: 29769406 pmcid: 6125173
Alli, E., Bash-Babula, J., Yang, J.-M. & Hait, W. N. Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res. 62, 6864–6869 (2002).
pubmed: 12460900
Gustafson, A. M. et al. Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci. Transl. Med. 2, 26ra25 (2010).
pubmed: 20375364 pmcid: 3694402
Kadara, H. et al. Transcriptomic architecture of the adjacent airway field cancerization in non-small cell lung cancer. J. Natl Cancer Inst. 106, dju004 (2014).
pubmed: 24563515 pmcid: 3982778
Howlader, N. Cancer statistics review, 1975–2014—SEER Statistics. SEER (1975). Available at, https://seer.cancer.gov/archive/csr/1975_2014/ (Accessed: 17th March 2019).
McDonald, E. R. et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell 170(577–592), 577–592.e10 (2017).
pubmed: 28753431
Malmanche, N., Maia, A. & Sunkel, C. E. The spindle assembly checkpoint: preventing chromosome mis-segregation during mitosis and meiosis. FEBS Lett. 580, 2888–2895 (2006).
pubmed: 16631173
Shi, Y.-X. et al. Prognostic and predictive values of CDK1 and MAD2L1 in lung adenocarcinoma. Oncotarget 7, 85235–85243 (2016).
pubmed: 27835911 pmcid: 5356732
Tsantoulis, P. et al. MAD2L1 overexpression leads to early metastasis in breast cancer. Ann. Oncol. 25, iv95 (2014).
Costello, J. C. et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol. 32, 1202–1212 (2014).
Gonen, M. et al. A community challenge for inferring genetic predictors of gene essentialities through analysis of a functional screen of cancer cell lines. Cell Syst. 5, 485–497.e3. (2017).
Shou, Y. et al. A five-gene hedgehog signature developed as a patient preselection tool for hedgehog inhibitor therapy in medulloblastoma. Clin. Cancer Res. 21, 585–593 (2015).
pubmed: 25473003
Jeay, S. et al. A distinct p53 target gene set predicts for response to the selective p53–HDM2 inhibitor NVP-CGM097. Elife 4, e06498 (2015).
Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).
pubmed: 12925520
Hanzelmann, S. et al. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 14, 7 (2013).

Auteurs

Rotem Ben-Hamo (R)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
Broad Institute of MIT and Harvard, Cambridge, MA, 02145, USA.

Adi Jacob Berger (A)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Nancy Gavert (N)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Mendy Miller (M)

Broad Institute of MIT and Harvard, Cambridge, MA, 02145, USA.

Guy Pines (G)

Department of Thoracic Surgery, Kaplan Medical Center, Affiliated to the Hebrew University School of Medicine, Rehovot, Israel.

Roni Oren (R)

Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel.

Eli Pikarsky (E)

Department of Pathology, Hebrew University of Jerusalem, Jerusalem, Israel.

Cyril H Benes (CH)

The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 52900, Israel.
Massachusetts General Hospital Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA.

Tzahi Neuman (T)

Department of Pathology, Hebrew University of Jerusalem, Jerusalem, Israel.

Yaara Zwang (Y)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Sol Efroni (S)

The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 52900, Israel.

Gad Getz (G)

Broad Institute of MIT and Harvard, Cambridge, MA, 02145, USA. gadgetz@broadinstitute.org.
Massachusetts General Hospital Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA. gadgetz@broadinstitute.org.
Harvard Medical School, Boston, MA, 02115, USA. gadgetz@broadinstitute.org.
Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA. gadgetz@broadinstitute.org.

Ravid Straussman (R)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. ravidst@weizmann.ac.il.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH