The structure of a novel membrane-associated 6-phosphogluconate dehydrogenase from Gluconacetobacter diazotrophicus (Gd6PGD) reveals a subfamily of short-chain 6PGDs.


Journal

The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646

Informations de publication

Date de publication:
02 2021
Historique:
received: 24 02 2020
revised: 11 06 2020
accepted: 30 06 2020
pubmed: 6 7 2020
medline: 27 7 2021
entrez: 5 7 2020
Statut: ppublish

Résumé

The enzyme 6-phosphogluconate dehydrogenase catalyzes the conversion of 6-phosphogluconate to ribulose-5-phosphate. It represents an important reaction in the oxidative pentose phosphate pathway, producing a ribose precursor essential for nucleotide and nucleic acid synthesis. We succeeded, for the first time, to determine the three-dimensional structure of this enzyme from an acetic acid bacterium, Gluconacetobacter diazotrophicus (Gd6PGD). Active Gd6PGD, a homodimer (70 kDa), was present in both the soluble and the membrane fractions of the nitrogen-fixing microorganism. The Gd6PGD belongs to the newly described subfamily of short-chain (333 AA) 6PGDs, compared to the long-chain subfamily (480 AA; e.g., Ovis aries, Homo sapiens). The shorter amino acid sequence in Gd6PGD induces the exposition of hydrophobic residues in the C-terminal domain. This distinct structural feature is key for the protein to associate with the membrane. Furthermore, in terms of function, the short-chain 6PGD seems to prefer NAD

Identifiants

pubmed: 32621793
doi: 10.1111/febs.15472
doi:

Substances chimiques

Bacterial Proteins 0
Gluconates 0
Ribulosephosphates 0
NAD 0U46U6E8UK
ribulose 5-phosphate 4151-19-3
NADP 53-59-8
Phosphogluconate Dehydrogenase EC 1.1.1.43
6-phosphogluconic acid W31WK7B8U0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1286-1304

Informations de copyright

© 2020 Federation of European Biochemical Societies.

Références

Mamlouk D & Gullo M (2013) Acetic acid bacteria: physiology and carbon source oxidation. Indian J Microbiol 53, 377-384.
Matsushita K, Toyama H & Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36, 247-297.
Matsushita K, Toyama H & Adachi O (2004) Respiratory chains in acetic acid bacteria: Membrane bound periplasmic sugar and alcohol respiration. In Respiration in Archaea and Bacteria. Diversity of Prokaryotic Respiratory Systems (Zannoni D, ed), pp. 81-99. Springer, Dordrecht.
Komagata K, Lino T & Yamada Y (2014) The family Acetobacteraceae. In The Prokaryotes. Alphaproteobacteria and Betaproteobacteria), Vol. 1 (Rosenberg E, DeLong E, Lory S, Stackebrandt E & Thompson F, eds), pp. 3-78. Springer-Verlag, Berlin Heidelberg.
Gómez-Manzo S, Contreras-Zentella M, González-Valdez A, Sosa-Torres ME, Arreguín-Espinoza R & Escamilla-Marván E (2008) The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus. Int J Food Microbiol 12, 71-78.
Gómez-Manzo S, Solano-Peralta A, Saucedo-Vázquez JP, Escamilla-Marván JE, Kroneck PMH & Sosa-Torres ME (2010) The Membrane-bound quinohemoprotein alcohol dehydrogenase from Gluconacetobacter diazotrophicus PAL5 carries a [2Fe-2S] cluster. Biochemistry 49, 2409-2415.
Gómez-Manzo S, Chavez-Pacheco JL, Contreras-Zentella M, Sosa-Torres ME, Arreguín-Espinosa R, Pérez de la Mora M, Membrillo-Hernández J & Escamilla JE (2010) Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c. J Bacteriol 192, 5718-5724.
Yakushi T & Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86, 1257-1265.
Gómez-Manzo S, González-Valdez AA, Oria-Hernández J, Reyes-Vivas H, Arreguín-Espinosa R, Kroneck PMH, Sosa-Torres ME & Escamilla JE (2012) The active (ADHa) and inactive (ADHi) forms of the PQQ-alcohol dehydrogenase from Gluconacetobacter diazotrophicus differ in their respective oligomeric structures and redox state of their corresponding prosthetic groups. FEMS Microbiol Lett 328, 106-113.
Gómez-Manzo S, Escamilla JE, González-Valdez A, López-Velázquez G, Vanoye-Carlo A, Marcial-Quino J, de la Mora-de la Mora I, Garcia-Torres I, Enríquez-Flores S, Contreras-Zentella ML et al.(2015) The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde dehydrogenase (ADHa). Int J Mol Sci 16, 1293-1311.
Saichana N, Matsushita K, Adachi O, Frébort I & Frebortova J (2015) Acetic acid bacteria: a group of bacteria with versatile biotechnological applications. Biotechnol Adv 33, 1260-1271.
De Roos J & De Vuyst L (2018) Acetic acid bacteria in fermented food and beverages. Curr Opin Biotechnol 49, 115-119.
Hauge JG, King TE & Cheldelin VH (1955) Oxidation of dihydroxyacetone via the pentose cycle in Acetobacter suboxydans. J Biol Chem 214, 11-26.
Kitos PA, Wang CH, Mohler BA, King TE & Cheldelin VH (1958) Glucose and gluconate dissimilation in Acetobacter suboxydans. J Biol Chem 233, 1295-1298.
White G & Wang C (1964) The dissimilation of glucose and gluconate by Acetobacter xylinum. 1. The origin and the fate of triose phosphate. Biochem J 90, 408-423.
Flores-Encarnación M, Contreras-Zentella M, Soto-Urzua L, Aguilar GR, Baca BE & Escamilla JE (1999) The respiratory system and diazotrophic activity of Acetobacter diazotrophicus PAL5. J Bacteriol 181, 6987-6995.
Attwood MM, Dijken JP & Pronk JT (1991) Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J Ferment Bioeng 72, 101-105.
Alvarez B & Martinez-Drets G (1995) Metabolic characterization of Acetobacter diazotrophicus. Can J Microbiol 41, 918-924.
Tejera NA, Ortega E, Rodés R & Lluch C (2004) Influence of carbon and nitrogen sources on growth, nitrogenase activity and carbon metabolism of Gluconacetobacter diazotrophicus. Can J Microbiol 50, 745-750.
Luna MF, Bernardelli CE, Galar ML & Boiardi JL (2006) Glucose metabolism in batch and continuous cultures of gluconacetobacter diazotrophicus PAL 3. Curr Microbiol 52, 163-168.
Luna MF & Boiardi JL (2008) Growth yields and glucose metabolism of N2-fixing Gluconacetobacter diazotrophicus at different culture pH values. World J Microbiol Biotechnol 24, 587-590.
Lery LMS, Coelho A, Kruger WMA, Gonçalves MSM, Santos MF, Valente RH, Santos EO, Rocha SLG, Perales J, Domont GB et al. (2008) Protein expression profile of Gluconacetobacter diazotrophicus PAL5, a sugar cane endophytic plant growth-promoting bacterium. Proteomics 8, 1631-1644.
Arai H, Sakurai K & Ishii M (2016) Metabolic features of Acetobacter aceti. In Acetic Acid Bacteria (Matsushita K, Toyama H, Tonouchi N & Okamoto-Kainuma A eds), pp. 255-271. Springer, Tokio.
Bringer S & Bott M (2016) Central carbon metabolism and respiration in Gluconobacter oxydans. In Acetic Acid Bacteria (Matsushita K, Toyama H, Tonouchi N & Okamoto-Kainuma A, eds), pp. 235-253. Springer, Tokio.
Wünschiers R (2012) Carbohydrate metabolism and citrate cycle. In Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (Michal G & Schomburg D, eds), 2nd edn, pp. 51-52. John Wiley & Sons Inc, Hoboken, NJ.
Rosemeyer MA (1987) The biochemistry of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase. Cell Biochem Funct 5, 79-95.
Haeussler K, Fritz-Wolf K, Reichmann M, Rahlfs S & Becker K (2018) Characterization of Plasmodium falciparum 6-phosphogluconate dehydrogenase as an antimalarial drug target. J Mol Biol 430, 4049-4067.
Cho ES, Cha YH, Kim HS, Kim NH & Yook JI (2018) The pentose phosphate pathway as a potential target for cancer therapy. Biomol Ther 26, 29-38.
Yang X, Peng X & Huang J (2018) Inhibiting 6-phosphogluconate dehydrogenase selectively targets breast cancer through AMPK activation. Clin Transl Oncol 20, 1145-1152.
Adams MJ, Ellis GH, Gover S, Naylor CE & Phillips C (1994) Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism. Structure 2, 651-668.
Phillips C, Dohnalek J, Gover S, Barret MP & Adams MJ (1998) A 2.8 Å resolution structure of 6-phosphogluconate dehydrogenase from the protozoan parasite Trypanosoma brucei: comparison with the sheep enzyme accounts for differences in activity with coenzyme and substrate analogues. J Mol Biol 282, 667-681.
Sundaramoorthy R, Iulek J, Barrett MP, Bidet O, Ruda GF, Gilbert IH & Hunter WN (2007) Crystal structures of a bacterial 6-phosphogluconate dehydrogenase reveal aspects of specificity, mechanism and mode of inhibition by analogues of high-energy reaction intermediates. FEBS J 274, 275-286.
He W, Wang Y, Liu W & Zhou CZ (2007) Crystal structure of Saccharomyces cerevisiae 6-phosphoglcuonate dehydrogenase Gnd1. BMC Struct Biol 7, 38.
Cameron S, Martini VP, Iulek J & Hunter WN (2009) Geobacillus stearothermophilus 6-phosphogluconate dehydrogenase complexed with 6-phosphogluconate. Acta Crystallogr Sect F 65, 450-454.
Chen YY, Ko TP, Chen WH, Lo LP, Lin CH & Wang AHJ (2010) Conformational changes associated with cofactor/substrate binding of 6-phosphogluconate dehydrogenase from Escherichia coli and Klebsiella pneumoniae: implications for enzyme mechanism. J Stuct Biol 169, 25-35.
Hitosugi T, Zhou L, Elf S, Fan J, Kang HB, Seo JH, Shan C, Dai Q, Zhang L, Xie J et al. (2012) Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 22, 585-600.
Adachi O & Ameyama M (1982) 6-Phospho-D-gluconate dehydrogenase from Gluconobacter suboxydans. Methods Enzymol 89, 291-295.
Rauch B, Pahlke J, Schweiger P & Deppenmeier U (2010) Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans. Appl Microbiol Biotechnol 88, 711-718.
Richhardt J, Bringer S & Bott M (2012) Mutational analysis of the pentose phosphate and entner-doudoroff pathways in Gluconobacter oxydans reveals improved growth of a Δedd Δeda mutant on mannitol. Appl Environ Microbiol 78, 6975-6986.
Richhardt J, Bringer S & Bott M (2013) Role of the pentose phosphate pathway and the Entner-Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H. Appl Microbiol Biotechnol 97, 4315-4323.
Liu Q & Hendrickson WA (2015) Crystallographic phasing from weak anomalous signals. Curr Opin Struct Biol 34, 99.
Bisswanger H (2008) Enzyme Kinetics, 2nd edn. Wiley-VCH Verlag, Weinheim. 91-119.
The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47, D506-D515.
NCBI Resource Coordinators (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44, D7-D19.
Wierenga RK, Terpstra P & Hol WGJ (1986) Prediction of the occurrence of the ADP-binding βαβ-folding in proteins, using an amino acid sequence fingerprint. J Mol Biol 187, 101-107.
Scrutton NS, Berry A & Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343, 38-43.
Tetaud E, Hanau S, Wells JM, Le Page RWF, Adams MJ, Arkison S & Barrett MP (1999) 6-Phosphogluconate dehydrogenase from Lactococcus lactis: a role for arginine residues in binding substrate and coenzyme. Biochem J 338, 55-60.
Adams MJ, Gover S, Leaback R, Phillips C & Somers DO (1991) The structure of 6-phosphogluconate dehydrogenase refined at 2.5 Å resolution. Acta Crystallogr B 47, 817-820.
González B, Martínez S, Chávez JL, Lee S, Castro NA, Domínguez MA, Gómez S, Contreras ML, Kennedy C & Escamilla JE. (2006) Respiratory system of Gluconacetobacter diazotrophicus PAL5. Evidence for a cyanide-sensitive cytochrome bb and cyanide-resistant cytochrome ba quinol oxidases. Biochim Biophys Acta 1757, 1614-1622.
Matsutani M, Hirakawa H, Sriherfyna FH, Yakushi T & Matsushita K (2019) Diversity of NADH dehydrogenases in acetic acid bacteria: adaptation to modify their phenotype through gene expansions and losses and neo-functionalization. Microbiology 165, 287.
Kostner D, Luchterhand B, Junker A, Voland S, Daniel R, Büchs J, Liebl W & Ehrenreich A (2015) The consequence of an additional NADH dehydrogenase paralog on the growth of Gluconobacter oxydans DSM3504. Appl Microbiol Biotechnol 99, 375.
Huelsenbeck JP & Rannala B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276, 227.
Nei M & Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press, Inc., New York, NY. 73-186.
Bleidorn C (2017) Phylogenetic analyses. In Phylogenomics (Bleidorn C, ed), pp.143-172. Springer, Cham.
Ajawatanawong P (2016) Molecular phylogenetics: concepts for a newcomer. In Network Biology. Advances in Biochemical Engineering/Biotechnology (Nookaew I, ed), pp. 160. Springer, Cham.
Lowry OH, Rosenbrough NJ, Farr AL & Randall RJ (1951) Protein measurement with the Folin Phenol reagent. J Biol Chem 193, 265.
Çakmakçi R, Erat M, Oral B, Erdogan Ü & Sahin F (2009) Enzyme activities and growth promotion of spinach by indole-3-acetic acid-producing rhizobacteria. J Hortic Sci Biotechnol 84, 375-380.
Morgenstern B (1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15, 211-218.
Morgenstern B (2004) DIALIGN: Multiple DNA and protein sequence alignment at BiBiServ. Nucleic Acids Res 32, W33-W36.
Minor W, Cymborowski M, Otwinowski Z & Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes. Acta Crystallogr D 62, 859-866.
Terwilliger TC, Adams PD, Read RJ, Mccoy AJ, Moriarty NW, Grosse-Kunstleve RW, Afonine PV, Zwart PH & Hung LW (2009) Decision-making in structure solution using bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr D 65, 582-601.
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66, 213-221.
Grosse-Kunstleve RW & Adams PD (2003) Substructure search procedures for macromolecular structures. Acta Crystallogr D 59, 1966-1973.
Terwilliger TC (2003) SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol 374, 22-37.
Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D 60, 2126-2132.
Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH & Adams PD (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D 68, 352-367.
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792-1797.
Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.
Kumar S, Tamura K & Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150-163.
Pickl A & Schönheit P (2015) The oxidative pentose phosphate pathway in the haloarchaeon Haloferax volcanii involves a novel type of glucose-6-phosphate dehydrogenase - the archaeal Zwischenferment. FEBS Lett 589, 1105.
Hanau S, Rippa M, Bertelli M, Dallocchio F & Barrett MP (1996) 6-Phosphogluconate dehydrogenase from Trypanosoma brucei. Kinetic analysis and inhibition by trypanocidal drugs. Eur J Biochem 240, 592-599.
Veronese FM, Boccu E, Fontana A, Benassi CA & Scoffone E (1974) Isolation and some properties of 6-phosphogluconate dehydrogenase from Bacillus stearothermophilus. Biochim Biophys Acta 334, 31-44.
Rendina AR, Hermes JD & Cleland WW (1984) Use of multiple isotope effects to study the mechanism of 6-phosphogluconate dehydrogenase. Biochemistry 23, 6257-6262.
Dyson JE, D'Orazio RE & Hanson WH (1973) Sheep liver 6-phosphogluconate dehydrogenase: isolation procedure and effect of pH, ionic strength, and metal ion son the kinetic parameters. Arch Biochem Biophys 154, 623-635.
Topham CM, Matthews B & Dalziel K (1986) Kinetic studies of 6-phosphogluconate dehydrogenase from sheep liver. Eur J Biochem 156, 555-567.
Pearse BM & Rosemeyer MA (1974) Human 6-phosphogluconate dehydrogenase. Purification of the erythrocyte enzyme and the influence of ions and NADPH on its activity. Eur J Biochem 42, 213-223.
Schrodinger L (2015) The PyMOL Molecular Graphics System, Version 2.0.4. Schrodinger LLC, New York, NY.

Auteurs

Pedro D Sarmiento-Pavía (PD)

Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, Mexico.

Annia Rodríguez-Hernández (A)

Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Mexico.

Adela Rodríguez-Romero (A)

Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Mexico.

Martha E Sosa-Torres (ME)

Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, Mexico.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH