The structure of a novel membrane-associated 6-phosphogluconate dehydrogenase from Gluconacetobacter diazotrophicus (Gd6PGD) reveals a subfamily of short-chain 6PGDs.
Amino Acid Sequence
Animals
Bacterial Proteins
/ chemistry
Biocatalysis
Gluconacetobacter
/ enzymology
Gluconates
/ chemistry
Humans
Models, Chemical
Models, Molecular
Molecular Structure
NAD
/ metabolism
NADP
/ metabolism
Phosphogluconate Dehydrogenase
/ classification
Phylogeny
Protein Domains
Protein Multimerization
Ribulosephosphates
/ chemistry
Sequence Homology, Amino Acid
Gluconacetobacter diazotrophicus
6-phosphogluconate dehydrogenase
X-ray structure
enzyme subfamily
membrane-associated enzyme
Journal
The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
24
02
2020
revised:
11
06
2020
accepted:
30
06
2020
pubmed:
6
7
2020
medline:
27
7
2021
entrez:
5
7
2020
Statut:
ppublish
Résumé
The enzyme 6-phosphogluconate dehydrogenase catalyzes the conversion of 6-phosphogluconate to ribulose-5-phosphate. It represents an important reaction in the oxidative pentose phosphate pathway, producing a ribose precursor essential for nucleotide and nucleic acid synthesis. We succeeded, for the first time, to determine the three-dimensional structure of this enzyme from an acetic acid bacterium, Gluconacetobacter diazotrophicus (Gd6PGD). Active Gd6PGD, a homodimer (70 kDa), was present in both the soluble and the membrane fractions of the nitrogen-fixing microorganism. The Gd6PGD belongs to the newly described subfamily of short-chain (333 AA) 6PGDs, compared to the long-chain subfamily (480 AA; e.g., Ovis aries, Homo sapiens). The shorter amino acid sequence in Gd6PGD induces the exposition of hydrophobic residues in the C-terminal domain. This distinct structural feature is key for the protein to associate with the membrane. Furthermore, in terms of function, the short-chain 6PGD seems to prefer NAD
Substances chimiques
Bacterial Proteins
0
Gluconates
0
Ribulosephosphates
0
NAD
0U46U6E8UK
ribulose 5-phosphate
4151-19-3
NADP
53-59-8
Phosphogluconate Dehydrogenase
EC 1.1.1.43
6-phosphogluconic acid
W31WK7B8U0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1286-1304Informations de copyright
© 2020 Federation of European Biochemical Societies.
Références
Mamlouk D & Gullo M (2013) Acetic acid bacteria: physiology and carbon source oxidation. Indian J Microbiol 53, 377-384.
Matsushita K, Toyama H & Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36, 247-297.
Matsushita K, Toyama H & Adachi O (2004) Respiratory chains in acetic acid bacteria: Membrane bound periplasmic sugar and alcohol respiration. In Respiration in Archaea and Bacteria. Diversity of Prokaryotic Respiratory Systems (Zannoni D, ed), pp. 81-99. Springer, Dordrecht.
Komagata K, Lino T & Yamada Y (2014) The family Acetobacteraceae. In The Prokaryotes. Alphaproteobacteria and Betaproteobacteria), Vol. 1 (Rosenberg E, DeLong E, Lory S, Stackebrandt E & Thompson F, eds), pp. 3-78. Springer-Verlag, Berlin Heidelberg.
Gómez-Manzo S, Contreras-Zentella M, González-Valdez A, Sosa-Torres ME, Arreguín-Espinoza R & Escamilla-Marván E (2008) The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus. Int J Food Microbiol 12, 71-78.
Gómez-Manzo S, Solano-Peralta A, Saucedo-Vázquez JP, Escamilla-Marván JE, Kroneck PMH & Sosa-Torres ME (2010) The Membrane-bound quinohemoprotein alcohol dehydrogenase from Gluconacetobacter diazotrophicus PAL5 carries a [2Fe-2S] cluster. Biochemistry 49, 2409-2415.
Gómez-Manzo S, Chavez-Pacheco JL, Contreras-Zentella M, Sosa-Torres ME, Arreguín-Espinosa R, Pérez de la Mora M, Membrillo-Hernández J & Escamilla JE (2010) Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c. J Bacteriol 192, 5718-5724.
Yakushi T & Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86, 1257-1265.
Gómez-Manzo S, González-Valdez AA, Oria-Hernández J, Reyes-Vivas H, Arreguín-Espinosa R, Kroneck PMH, Sosa-Torres ME & Escamilla JE (2012) The active (ADHa) and inactive (ADHi) forms of the PQQ-alcohol dehydrogenase from Gluconacetobacter diazotrophicus differ in their respective oligomeric structures and redox state of their corresponding prosthetic groups. FEMS Microbiol Lett 328, 106-113.
Gómez-Manzo S, Escamilla JE, González-Valdez A, López-Velázquez G, Vanoye-Carlo A, Marcial-Quino J, de la Mora-de la Mora I, Garcia-Torres I, Enríquez-Flores S, Contreras-Zentella ML et al.(2015) The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde dehydrogenase (ADHa). Int J Mol Sci 16, 1293-1311.
Saichana N, Matsushita K, Adachi O, Frébort I & Frebortova J (2015) Acetic acid bacteria: a group of bacteria with versatile biotechnological applications. Biotechnol Adv 33, 1260-1271.
De Roos J & De Vuyst L (2018) Acetic acid bacteria in fermented food and beverages. Curr Opin Biotechnol 49, 115-119.
Hauge JG, King TE & Cheldelin VH (1955) Oxidation of dihydroxyacetone via the pentose cycle in Acetobacter suboxydans. J Biol Chem 214, 11-26.
Kitos PA, Wang CH, Mohler BA, King TE & Cheldelin VH (1958) Glucose and gluconate dissimilation in Acetobacter suboxydans. J Biol Chem 233, 1295-1298.
White G & Wang C (1964) The dissimilation of glucose and gluconate by Acetobacter xylinum. 1. The origin and the fate of triose phosphate. Biochem J 90, 408-423.
Flores-Encarnación M, Contreras-Zentella M, Soto-Urzua L, Aguilar GR, Baca BE & Escamilla JE (1999) The respiratory system and diazotrophic activity of Acetobacter diazotrophicus PAL5. J Bacteriol 181, 6987-6995.
Attwood MM, Dijken JP & Pronk JT (1991) Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J Ferment Bioeng 72, 101-105.
Alvarez B & Martinez-Drets G (1995) Metabolic characterization of Acetobacter diazotrophicus. Can J Microbiol 41, 918-924.
Tejera NA, Ortega E, Rodés R & Lluch C (2004) Influence of carbon and nitrogen sources on growth, nitrogenase activity and carbon metabolism of Gluconacetobacter diazotrophicus. Can J Microbiol 50, 745-750.
Luna MF, Bernardelli CE, Galar ML & Boiardi JL (2006) Glucose metabolism in batch and continuous cultures of gluconacetobacter diazotrophicus PAL 3. Curr Microbiol 52, 163-168.
Luna MF & Boiardi JL (2008) Growth yields and glucose metabolism of N2-fixing Gluconacetobacter diazotrophicus at different culture pH values. World J Microbiol Biotechnol 24, 587-590.
Lery LMS, Coelho A, Kruger WMA, Gonçalves MSM, Santos MF, Valente RH, Santos EO, Rocha SLG, Perales J, Domont GB et al. (2008) Protein expression profile of Gluconacetobacter diazotrophicus PAL5, a sugar cane endophytic plant growth-promoting bacterium. Proteomics 8, 1631-1644.
Arai H, Sakurai K & Ishii M (2016) Metabolic features of Acetobacter aceti. In Acetic Acid Bacteria (Matsushita K, Toyama H, Tonouchi N & Okamoto-Kainuma A eds), pp. 255-271. Springer, Tokio.
Bringer S & Bott M (2016) Central carbon metabolism and respiration in Gluconobacter oxydans. In Acetic Acid Bacteria (Matsushita K, Toyama H, Tonouchi N & Okamoto-Kainuma A, eds), pp. 235-253. Springer, Tokio.
Wünschiers R (2012) Carbohydrate metabolism and citrate cycle. In Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (Michal G & Schomburg D, eds), 2nd edn, pp. 51-52. John Wiley & Sons Inc, Hoboken, NJ.
Rosemeyer MA (1987) The biochemistry of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase. Cell Biochem Funct 5, 79-95.
Haeussler K, Fritz-Wolf K, Reichmann M, Rahlfs S & Becker K (2018) Characterization of Plasmodium falciparum 6-phosphogluconate dehydrogenase as an antimalarial drug target. J Mol Biol 430, 4049-4067.
Cho ES, Cha YH, Kim HS, Kim NH & Yook JI (2018) The pentose phosphate pathway as a potential target for cancer therapy. Biomol Ther 26, 29-38.
Yang X, Peng X & Huang J (2018) Inhibiting 6-phosphogluconate dehydrogenase selectively targets breast cancer through AMPK activation. Clin Transl Oncol 20, 1145-1152.
Adams MJ, Ellis GH, Gover S, Naylor CE & Phillips C (1994) Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism. Structure 2, 651-668.
Phillips C, Dohnalek J, Gover S, Barret MP & Adams MJ (1998) A 2.8 Å resolution structure of 6-phosphogluconate dehydrogenase from the protozoan parasite Trypanosoma brucei: comparison with the sheep enzyme accounts for differences in activity with coenzyme and substrate analogues. J Mol Biol 282, 667-681.
Sundaramoorthy R, Iulek J, Barrett MP, Bidet O, Ruda GF, Gilbert IH & Hunter WN (2007) Crystal structures of a bacterial 6-phosphogluconate dehydrogenase reveal aspects of specificity, mechanism and mode of inhibition by analogues of high-energy reaction intermediates. FEBS J 274, 275-286.
He W, Wang Y, Liu W & Zhou CZ (2007) Crystal structure of Saccharomyces cerevisiae 6-phosphoglcuonate dehydrogenase Gnd1. BMC Struct Biol 7, 38.
Cameron S, Martini VP, Iulek J & Hunter WN (2009) Geobacillus stearothermophilus 6-phosphogluconate dehydrogenase complexed with 6-phosphogluconate. Acta Crystallogr Sect F 65, 450-454.
Chen YY, Ko TP, Chen WH, Lo LP, Lin CH & Wang AHJ (2010) Conformational changes associated with cofactor/substrate binding of 6-phosphogluconate dehydrogenase from Escherichia coli and Klebsiella pneumoniae: implications for enzyme mechanism. J Stuct Biol 169, 25-35.
Hitosugi T, Zhou L, Elf S, Fan J, Kang HB, Seo JH, Shan C, Dai Q, Zhang L, Xie J et al. (2012) Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 22, 585-600.
Adachi O & Ameyama M (1982) 6-Phospho-D-gluconate dehydrogenase from Gluconobacter suboxydans. Methods Enzymol 89, 291-295.
Rauch B, Pahlke J, Schweiger P & Deppenmeier U (2010) Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans. Appl Microbiol Biotechnol 88, 711-718.
Richhardt J, Bringer S & Bott M (2012) Mutational analysis of the pentose phosphate and entner-doudoroff pathways in Gluconobacter oxydans reveals improved growth of a Δedd Δeda mutant on mannitol. Appl Environ Microbiol 78, 6975-6986.
Richhardt J, Bringer S & Bott M (2013) Role of the pentose phosphate pathway and the Entner-Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H. Appl Microbiol Biotechnol 97, 4315-4323.
Liu Q & Hendrickson WA (2015) Crystallographic phasing from weak anomalous signals. Curr Opin Struct Biol 34, 99.
Bisswanger H (2008) Enzyme Kinetics, 2nd edn. Wiley-VCH Verlag, Weinheim. 91-119.
The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47, D506-D515.
NCBI Resource Coordinators (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44, D7-D19.
Wierenga RK, Terpstra P & Hol WGJ (1986) Prediction of the occurrence of the ADP-binding βαβ-folding in proteins, using an amino acid sequence fingerprint. J Mol Biol 187, 101-107.
Scrutton NS, Berry A & Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343, 38-43.
Tetaud E, Hanau S, Wells JM, Le Page RWF, Adams MJ, Arkison S & Barrett MP (1999) 6-Phosphogluconate dehydrogenase from Lactococcus lactis: a role for arginine residues in binding substrate and coenzyme. Biochem J 338, 55-60.
Adams MJ, Gover S, Leaback R, Phillips C & Somers DO (1991) The structure of 6-phosphogluconate dehydrogenase refined at 2.5 Å resolution. Acta Crystallogr B 47, 817-820.
González B, Martínez S, Chávez JL, Lee S, Castro NA, Domínguez MA, Gómez S, Contreras ML, Kennedy C & Escamilla JE. (2006) Respiratory system of Gluconacetobacter diazotrophicus PAL5. Evidence for a cyanide-sensitive cytochrome bb and cyanide-resistant cytochrome ba quinol oxidases. Biochim Biophys Acta 1757, 1614-1622.
Matsutani M, Hirakawa H, Sriherfyna FH, Yakushi T & Matsushita K (2019) Diversity of NADH dehydrogenases in acetic acid bacteria: adaptation to modify their phenotype through gene expansions and losses and neo-functionalization. Microbiology 165, 287.
Kostner D, Luchterhand B, Junker A, Voland S, Daniel R, Büchs J, Liebl W & Ehrenreich A (2015) The consequence of an additional NADH dehydrogenase paralog on the growth of Gluconobacter oxydans DSM3504. Appl Microbiol Biotechnol 99, 375.
Huelsenbeck JP & Rannala B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276, 227.
Nei M & Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press, Inc., New York, NY. 73-186.
Bleidorn C (2017) Phylogenetic analyses. In Phylogenomics (Bleidorn C, ed), pp.143-172. Springer, Cham.
Ajawatanawong P (2016) Molecular phylogenetics: concepts for a newcomer. In Network Biology. Advances in Biochemical Engineering/Biotechnology (Nookaew I, ed), pp. 160. Springer, Cham.
Lowry OH, Rosenbrough NJ, Farr AL & Randall RJ (1951) Protein measurement with the Folin Phenol reagent. J Biol Chem 193, 265.
Çakmakçi R, Erat M, Oral B, Erdogan Ü & Sahin F (2009) Enzyme activities and growth promotion of spinach by indole-3-acetic acid-producing rhizobacteria. J Hortic Sci Biotechnol 84, 375-380.
Morgenstern B (1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15, 211-218.
Morgenstern B (2004) DIALIGN: Multiple DNA and protein sequence alignment at BiBiServ. Nucleic Acids Res 32, W33-W36.
Minor W, Cymborowski M, Otwinowski Z & Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes. Acta Crystallogr D 62, 859-866.
Terwilliger TC, Adams PD, Read RJ, Mccoy AJ, Moriarty NW, Grosse-Kunstleve RW, Afonine PV, Zwart PH & Hung LW (2009) Decision-making in structure solution using bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr D 65, 582-601.
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66, 213-221.
Grosse-Kunstleve RW & Adams PD (2003) Substructure search procedures for macromolecular structures. Acta Crystallogr D 59, 1966-1973.
Terwilliger TC (2003) SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol 374, 22-37.
Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D 60, 2126-2132.
Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH & Adams PD (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D 68, 352-367.
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792-1797.
Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.
Kumar S, Tamura K & Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150-163.
Pickl A & Schönheit P (2015) The oxidative pentose phosphate pathway in the haloarchaeon Haloferax volcanii involves a novel type of glucose-6-phosphate dehydrogenase - the archaeal Zwischenferment. FEBS Lett 589, 1105.
Hanau S, Rippa M, Bertelli M, Dallocchio F & Barrett MP (1996) 6-Phosphogluconate dehydrogenase from Trypanosoma brucei. Kinetic analysis and inhibition by trypanocidal drugs. Eur J Biochem 240, 592-599.
Veronese FM, Boccu E, Fontana A, Benassi CA & Scoffone E (1974) Isolation and some properties of 6-phosphogluconate dehydrogenase from Bacillus stearothermophilus. Biochim Biophys Acta 334, 31-44.
Rendina AR, Hermes JD & Cleland WW (1984) Use of multiple isotope effects to study the mechanism of 6-phosphogluconate dehydrogenase. Biochemistry 23, 6257-6262.
Dyson JE, D'Orazio RE & Hanson WH (1973) Sheep liver 6-phosphogluconate dehydrogenase: isolation procedure and effect of pH, ionic strength, and metal ion son the kinetic parameters. Arch Biochem Biophys 154, 623-635.
Topham CM, Matthews B & Dalziel K (1986) Kinetic studies of 6-phosphogluconate dehydrogenase from sheep liver. Eur J Biochem 156, 555-567.
Pearse BM & Rosemeyer MA (1974) Human 6-phosphogluconate dehydrogenase. Purification of the erythrocyte enzyme and the influence of ions and NADPH on its activity. Eur J Biochem 42, 213-223.
Schrodinger L (2015) The PyMOL Molecular Graphics System, Version 2.0.4. Schrodinger LLC, New York, NY.