Degeneracy in molecular scale organization of biological membranes.


Journal

Soft matter
ISSN: 1744-6848
Titre abrégé: Soft Matter
Pays: England
ID NLM: 101295070

Informations de publication

Date de publication:
07 Aug 2020
Historique:
pubmed: 7 7 2020
medline: 24 6 2021
entrez: 7 7 2020
Statut: ppublish

Résumé

The scale-rich spatiotemporal organization in biological membranes has its origin in the differential inter- and intra-molecular interactions among their constituents. In this work, we explore the molecular-origin behind that variety and possible degeneracy in lateral organization in membranes. For our study, we post-process microsecond long all-atom molecular dynamics trajectories for three systems that exhibit fluid phase coexistence: (i) PSM/POPC/Chol (0.47/0.32/0.21), (ii) PSM/DOPC/Chol (0.43/0.38/0.19) and (iii) DPPC/DOPC/Chol (0.37/0.36/0.27). To distinguish the liquid ordered and disordered regions at molecular scales, we calculate the degree of non-affineness of individual lipids in their neighbourhood and track their topological rearrangements. Disconnectivity graph analysis with respect to membrane organization shows that the DPPC/DOPC/Chol and PSM/DOPC/Chol systems exhibit funnel-like energy landscapes as opposed to a highly frustrated energy landscape for the more biomimetic PSM/POPC/Chol system. We use these measurements to develop a continuous lattice Hamiltonian and evolve that using Monte Carlo simulated annealing to explore the possibility of structural degeneracy in membrane organization. Our data show that model membranes with lipid constituents that are biomimetic (PSM/POPC/Chol) have the ability to access a large range of membrane sub-structure space (higher degeneracy) as compared to the other two systems, which form only one kind of substructure even with changing composition. Since the spatiotemporal organization in biological membranes dictates the "molecular encounters" and in turn larger scale biological processes such as molecular transport, trafficking and cellular signalling, we posit that this structural degeneracy could enable access to a larger repository to functionally important molecular organization in systems with physiologically relevant compositions.

Identifiants

pubmed: 32628232
doi: 10.1039/d0sm00619j
doi:

Substances chimiques

Lipid Bilayers 0
Phosphatidylcholines 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6752-6764

Auteurs

Sahithya S Iyer (SS)

Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India. anand@iisc.ac.in.

Articles similaires

Humans Animals Adherens Junctions Intercellular Junctions Tight Junctions
1.00
Plasmodesmata Endoplasmic Reticulum Arabidopsis Cytokinesis Arabidopsis Proteins
Angiotensin-Converting Enzyme 2 Humans SARS-CoV-2 Spike Glycoprotein, Coronavirus Receptors, Virus

Molecular probes for tracking lipid droplet membrane dynamics.

Lingxiu Kong, Qingjie Bai, Cuicui Li et al.
1.00
Lipid Droplets Molecular Probes Humans Membrane Proteins Animals

Classifications MeSH