Microglia phagocytose myelin sheaths to modify developmental myelination.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
09 2020
Historique:
received: 01 12 2019
accepted: 13 05 2020
pubmed: 8 7 2020
medline: 1 12 2020
entrez: 8 7 2020
Statut: ppublish

Résumé

During development, oligodendrocytes contact and wrap neuronal axons with myelin. Similarly to neurons and synapses, excess myelin sheaths are produced and selectively eliminated, but how elimination occurs is unknown. Microglia, the resident immune cells of the central nervous system, engulf surplus neurons and synapses. To determine whether microglia also prune myelin sheaths, we used zebrafish to visualize and manipulate interactions between microglia, oligodendrocytes, and neurons during development. We found that microglia closely associate with oligodendrocytes and specifically phagocytose myelin sheaths. By using a combination of optical, genetic, chemogenetic, and behavioral approaches, we reveal that neuronal activity bidirectionally balances microglial association with neuronal cell bodies and myelin phagocytosis in the optic tectum. Furthermore, multiple strategies to deplete microglia resulted in oligodendrocytes maintaining excessive and ectopic myelin. Our work reveals a neuronal activity-regulated role for microglia in modifying developmental myelin targeting by oligodendrocytes.

Identifiants

pubmed: 32632287
doi: 10.1038/s41593-020-0654-2
pii: 10.1038/s41593-020-0654-2
pmc: PMC7483351
mid: NIHMS1594382
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1055-1066

Subventions

Organisme : NINDS NIH HHS
ID : P30 NS048154
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS095679
Pays : United States

Références

Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).
pubmed: 25849987 pmcid: 4414883 doi: 10.1038/nn.3992
Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015).
pubmed: 25849985 pmcid: 4427868 doi: 10.1038/nn.3991
Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).
Mitew, S. et al. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat. Commun. 9, 306 (2018).
Scholz, J., Klein, M. C., Behrens, T. E. J. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 (2009).
pubmed: 19820707 pmcid: 2770457 doi: 10.1038/nn.2412
Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J. & Bergles, D. E. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat. Neurosci. 21, 696–706 (2018).
pubmed: 29556025 pmcid: 5920726 doi: 10.1038/s41593-018-0121-5
Sampaio-Baptista, C. et al. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 33, 19499–19503 (2013).
pubmed: 24336716 pmcid: 3858622 doi: 10.1523/JNEUROSCI.3048-13.2013
McKenzie, I. A. et al. Motor skill learning requires active central myelination. Science 346, 318–322 (2014).
pubmed: 25324381 pmcid: 6324726 doi: 10.1126/science.1254960
Liu, P., Du, J. & He, C. Developmental pruning of early-stage myelin segments during CNS myelination in vivo. Cell Res. 23, 962–964 (2013).
pubmed: 23649315 pmcid: 3698634 doi: 10.1038/cr.2013.62
Li, Y., Du, X., Liu, C., Wen, Z.-L. & Du, J. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell 23, 1189–1202 (2012).
pubmed: 23201120 doi: 10.1016/j.devcel.2012.10.027 pmcid: 23201120
Tremblay, M.-È., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).
pubmed: 21072242 pmcid: 2970556 doi: 10.1371/journal.pbio.1000527
Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).
pubmed: 22632727 pmcid: 22632727 doi: 10.1016/j.neuron.2012.03.026
Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).
pubmed: 27033548 pmcid: 27033548 doi: 10.1126/science.aad8373
Neumann, H., Kotter, M. R. & Franklin, R. J. M. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132, 288–295 (2009).
pubmed: 18567623 doi: 10.1093/brain/awn109
Uranova, N. A., Vikhreva, O. V., Rachmanova, V. I. & Orlovskaya, D. D. Ultrastructural alterations of myelinated fibers and oligodendrocytes in the prefrontal cortex in schizophrenia: a postmortem morphometric study. Schizophr. Res. Treatment 2011, 325789 (2011).
pubmed: 22937264 pmcid: 3420756 doi: 10.1155/2011/325789
Pozner, A. et al. Intracellular calcium dynamics in cortical microglia responding to focal laser injury in the PC::G5-tdT reporter mouse. Front. Mol. Neurosci. 8, 12 (2015).
pubmed: 26005403 pmcid: 4424843 doi: 10.3389/fnmol.2015.00012
Eichhoff, G., Brawek, B. & Garaschuk, O. Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochim. Biophys. Acta Mol. Cell Res. 1813, 1014–1024 (2011).
doi: 10.1016/j.bbamcr.2010.10.018
Sieger, D., Moritz, C., Ziegenhals, T., Prykhozhij, S. & Peri, F. Long-range Ca
pubmed: 22632801 doi: 10.1016/j.devcel.2012.04.012
Bai, Q., Sun, M., Stolz, D. B. & Burton, E. A. Major isoform of zebrafish P0 is a 23.5 kDa myelin glycoprotein expressed in selected white matter tracts of the central nervous system. J. Comp. Neurol. 519, 1580–1596 (2011).
pubmed: 21452240 pmcid: 3903511 doi: 10.1002/cne.22587
Nevin, L. M., Robles, E., Baier, H. & Scott, E. K. Focusing on optic tectum circuitry through the lens of genetics. BMC Biol. 8, 126 (2010).
Langebeck-Jensen, K., Shahar, O. D., Schuman, E. M., Langer, J. D. & Ryu, S. Larval zebrafish proteome regulation in response to an environmental challenge. Proteomics https://doi.org/10.1002/pmic.201900028 (2019).
Shiau, C. E., Kaufman, Z., Meireles, A. M. & Talbot, W. S. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish. PLoS ONE 10, e0117513 (2015).
pubmed: 25615614 pmcid: 4304715 doi: 10.1371/journal.pone.0117513
Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274–288 (2001).
pubmed: 11784010 pmcid: 11784010 doi: 10.1006/dbio.2001.0393
Green, L. A., Nebiolo, J. C. & Smith, C. J. Microglia exit the CNS in spinal root avulsion. PLoS Biol. 17, e3000159 (2019).
pubmed: 30794533 pmcid: 6402705 doi: 10.1371/journal.pbio.3000159
Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).
pubmed: 28963396 pmcid: 5686552 doi: 10.15252/embj.201696056
Giera, S. et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. eLife 7, e33385 (2018).
Almeida, R. G. et al. Myelination of neuronal cell bodies when myelin supply exceeds axonal demand. Curr. Biol. 28, 1296–1305 (2018).
pubmed: 29628374 pmcid: 5912901 doi: 10.1016/j.cub.2018.02.068
Li, Q. et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101, 207–223 (2019).
pubmed: 30606613 doi: 10.1016/j.neuron.2018.12.006 pmcid: 30606613
Fields, R. D. Volume transmission in activity-dependent regulation of myelinating glia. Neurochem. Int. 45, 503–509 (2004).
pubmed: 15186916 doi: 10.1016/j.neuint.2003.11.015 pmcid: 15186916
Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).
pubmed: 15895084 doi: 10.1038/nn1472
Koudelka, S. et al. Individual neuronal subtypes exhibit diversity in CNS myelination mediated by synaptic vesicle release. Curr. Biol. https://doi.org/10.1016/j.cub.2016.03.070 (2016).
Nelson, H. N. et al. Individual neuronal subtypes control initial myelin sheath growth and stabilization. Preprint at bioRxiv https://doi.org/10.1101/809996 (2019).
Geraghty, A. C. et al. Loss of adaptive myelination contributes to methotrexate chemotherapy-related cognitive impairment. Neuron 193, 250–265 (2019).
Baraban, M., Koudelka, S. & Lyons, D. A. Ca
pubmed: 29230058 doi: 10.1038/s41593-017-0040-x
Nawaz, S. et al. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev. Cell 34, 139–151 (2015).
pubmed: 26166299 pmcid: 4736019 doi: 10.1016/j.devcel.2015.05.013
Elazar, N. et al. Axoglial adhesion by Cadm4 regulates CNS myelination. Neuron 101, 224–231 (2018).
Hughes, A. N. & Appel, B. Oligodendrocytes express synaptic proteins that modulate myelin sheath formation. Nat. Commun. 10, 4125 (2019).
pubmed: 31511515 pmcid: 6739339 doi: 10.1038/s41467-019-12059-y
Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).
pubmed: 18083105 pmcid: 18083105 doi: 10.1016/j.cell.2007.10.036
Brunner, C., Lassmann, H., Waehneldt, T. V., Matthieu, J. M. & Linington, C. Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the CNS of adult rats. J. Neurochem. 52, 296–304 (1989).
pubmed: 2462020 doi: 10.1111/j.1471-4159.1989.tb10930.x
van der Laan, L. J. et al. Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-alpha and nitric oxide. J. Neuroimmunol. 70, 145–152 (1996).
pubmed: 8898723 doi: 10.1016/S0165-5728(96)00110-5
Barnett, M. H., Parratt, J. D. E., Cho, E. S. & Prineas, J. W. Immunoglobulins and complement in postmortem multiple sclerosis tissue. Ann. Neurol. 65, 32–46 (2009).
pubmed: 19194879 doi: 10.1002/ana.21524
Gunner, G. et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat. Neurosci. 22, 1075–1088 (2019).
pubmed: 31209379 pmcid: 6596419 doi: 10.1038/s41593-019-0419-y
Rotshenker, S. et al. Galectin-3/MAC-2, ras and PI3K activate complement receptor-3 and scavenger receptor-AI/II mediated myelin phagocytosis in microglia. Glia 56, 1607–1613 (2008).
pubmed: 18615637 doi: 10.1002/glia.20713
Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).
pubmed: 15831717 doi: 10.1126/science.1110647
Stowell, R. D. et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat. Neurosci. 22, 1782–1792 (2019).
pubmed: 31636451 pmcid: 6875777 doi: 10.1038/s41593-019-0514-0
Liu, Y. U. et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat. Neurosci. 22, 1771–1781 (2019).
pubmed: 31636449 pmcid: 6858573 doi: 10.1038/s41593-019-0511-3
Brown, G. C. & Neher, J. J. Microglial phagocytosis of live neurons. Nat. Rev. Neurosci. 15, 209–216 (2014).
pubmed: 24646669 doi: 10.1038/nrn3710
De Biase, L. M. et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95, 341–356 (2017).
pubmed: 28689984 pmcid: 5754189 doi: 10.1016/j.neuron.2017.06.020
Oosterhof, N. et al. Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am. J. Hum. Genet. 104, 936–947 (2019).
pubmed: 30982608 pmcid: 6506793 doi: 10.1016/j.ajhg.2019.03.010
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).
pubmed: 8589427 doi: 10.1002/aja.1002030302 pmcid: 8589427
Higashijima, S.-I., Mandel, G. & Fetcho, J. R. Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish. J. Comp. Neurol. 480, 1–18 (2004).
pubmed: 15515020 doi: 10.1002/cne.20278 pmcid: 15515020
Kwan, K. M. et al. The Tol2kit: a multisite gateway-based construction Kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088–3099 (2007).
pubmed: 17937395 doi: 10.1002/dvdy.21343 pmcid: 17937395
Ellett, F., Pase, L., Hayman, J. W., Andrianopoulos, A. & Lieschke, G. J. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117, e49–e56 (2011).
pubmed: 21084707 pmcid: 3056479 doi: 10.1182/blood-2010-10-314120
Mathias, J. R., Zhang, Z., Saxena, M. T. & Mumm, J. S. Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase. Zebrafish 11, 85–97 (2014).
pubmed: 24428354 pmcid: 3992008 doi: 10.1089/zeb.2013.0937
Chen, S., Chiu, C. N., McArthur, K. L., Fetcho, J. R. & Prober, D. A. TRP channel mediated neuronal activation and ablation in freely behaving zebrafish. Nat. Methods 13, 147–150 (2016).
pubmed: 26657556 doi: 10.1038/nmeth.3691
Shiau, C. E., Monk, K. R., Joo, W. & Talbot, W. S. An anti-inflammatory NOD-like receptor is required for microglia development. Cell Rep. 5, 1342–1352 (2013).
pubmed: 24316075 doi: 10.1016/j.celrep.2013.11.004
Almeida, R. & Lyons, D. Oligodendrocyte development in the absence of their target axons in vivo. PLoS ONE 11, e0164432 (2016).
pubmed: 27716830 pmcid: 5055324 doi: 10.1371/journal.pone.0164432
Li, L., Jin, H., Xu, J., Shi, Y. & Wen, Z. Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis. Blood 117, 1359–1369 (2011).
pubmed: 21079149 doi: 10.1182/blood-2010-06-290700
Kucenas, S., Wang, W.-D., Knapik, E. W. & Appel, B. A selective glial barrier at motor axon exit points prevents oligodendrocyte migration from the spinal cord. J. Neurosci. 29, 15187–15194 (2009).
pubmed: 19955371 pmcid: 2837368 doi: 10.1523/JNEUROSCI.4193-09.2009
Wang, Y. et al. Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology. Nat. Neurosci. 22, 1936–1944 (2019).
pubmed: 31570865 pmcid: 6858541 doi: 10.1038/s41593-019-0492-2
Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).
pubmed: 27412086 pmcid: 27412086
Longair, M. H., Baker, D. A. & Armstrong, J. D. Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27, 2453–2454 (2011).
pubmed: 21727141 doi: 10.1093/bioinformatics/btr390 pmcid: 21727141

Auteurs

Alexandria N Hughes (AN)

Neuroscience Graduate Program, University of Colorado, Aurora, CO, USA.

Bruce Appel (B)

Department of Pediatrics, Section of Developmental Biology, University of Colorado, Aurora, CO, USA. bruce.appel@cuanschutz.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH