Global convergence in the balance between leaf water supply and demand across vascular land plants.


Journal

Functional plant biology : FPB
ISSN: 1445-4416
Titre abrégé: Funct Plant Biol
Pays: Australia
ID NLM: 101154361

Informations de publication

Date de publication:
09 2020
Historique:
received: 13 04 2019
accepted: 16 04 2020
pubmed: 9 7 2020
medline: 20 4 2021
entrez: 9 7 2020
Statut: ppublish

Résumé

Coordination between the density of veins (water supply) and stomata (demand for water) has been found in the leaves of modern angiosperms and also in ferns. This suggests that this coordinated development is not a unique adaptation of derived angiosperms that enables their high productivity. To test this, we compiled leaf vein and stomatal density data from 520 land vascular plant species including derived angiosperms, basal angiosperms, gymnosperms and ferns. We found global coordination across vascular land plants, although the relationships were not significant in gymnosperms and vessel-less angiosperms. By comparing the evolution of xylem conduit elements with variation in the density of veins and stomata and theoretical stomatal conductance among plant lineages, we found that the physiological advantage of modern angiosperms is associated with the emergence of xylem with low intraconduit resistance and leaves with high vein and stomata densities. Thus our results indicate two major events associated with surges in xylem hydraulic capacity in angiosperms: (1) the origin of vessels and (2) the emergence of vessels with simple perforation plates, which diminished physical limitations on stomatal conductance. These evolutionary innovations may have enabled derived angiosperms to be more productive and adaptive to the changing climate.

Identifiants

pubmed: 32635988
pii: FP19101
doi: 10.1071/FP19101
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

904-911

Auteurs

Yin Wen (Y)

Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China; and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China.

Wan-Li Zhao (WL)

Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong 256600, China; and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Kun-Fang Cao (KF)

Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China; and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China; and Corresponding author. Email: kunfangcao@gxu.edu.cn.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis

Classifications MeSH