Genetic and transcriptomic evidences suggest ARO10 genes are involved in benzenoid biosynthesis by yeast.
4-hydroxybenzaldehyde
benzoylformate decarboxylase
coenzyme Q
wine yeast
Journal
Yeast (Chichester, England)
ISSN: 1097-0061
Titre abrégé: Yeast
Pays: England
ID NLM: 8607637
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
11
02
2020
revised:
09
06
2020
accepted:
03
07
2020
pubmed:
9
7
2020
medline:
10
9
2021
entrez:
9
7
2020
Statut:
ppublish
Résumé
Benzenoids are compounds associated with floral and fruity flavours in flowers, fruits and leaves and present a role in hormonal signalling in plants. These molecules are produced by the phenyl ammonia lyase pathway. However, some yeasts can also synthesize them from aromatic amino acids using an alternative pathway that remains unknown. Hanseniaspora vineae can produce benzenoids at levels up to two orders of magnitude higher than Saccharomyces species, so it is a model microorganism for studying benzenoid biosynthesis pathways in yeast. According to their genomes, several enzymes have been proposed to be involved in a mandelate pathway similar to that described for some prokaryotic cells. Among them, the ARO10 gene product could present benzoylformate decarboxylase activity. This enzyme catalyses the decarboxylation of benzoylformate into benzaldehyde at the end of the mandelate pathway in benzyl alcohol formation. Two homologous genes of ARO10 were found in the two sequenced H. vineae strains. In this study, nine other H. vineae strains were analysed to detect the presence and per cent homology of ARO10 sequences by PCR using specific primers designed for this species. Also, the copy number of the genes was estimated by quantitative PCR. To verify the relation of ARO10 with the production of benzyl alcohol during fermentation, a deletion mutant in the ARO10 gene of Saccharomyces cerevisiae was used. The two HvARO10 paralogues were analysed and compared with other α-ketoacid decarboxylases at the sequence and structural level.
Substances chimiques
Benzaldehydes
0
Benzene Derivatives
0
Saccharomyces cerevisiae Proteins
0
ARO10 protein, S cerevisiae
EC 4.1.1.1
Pyruvate Decarboxylase
EC 4.1.1.1
Benzyl Alcohol
LKG8494WBH
benzaldehyde
TA269SD04T
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
427-435Informations de copyright
© 2020 John Wiley & Sons, Ltd.
Références
Alessandrini, M., Gaiotti, F., Belfiore, N., Matarese, F., D'Onofrio, C., & Tomasi, D. (2017). Influence of vineyard altitude on Glera grape ripening (Vitis vinifera L.): Effects on aroma evolution and wine sensory profile. Journal of the Science of Food and Agriculture, 97(9), 2695-2705. https://doi.org/10.1002/jsfa.8093
Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., De Castro, E., … Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40(W1), W597-W603. https://doi.org/10.1093/nar/gks400
Carrau, F. M., Medina, K., Farina, L., Boido, E., Henschke, P. A., & Dellacassa, E. (2008). Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: Effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Research, 8(7), 1196-1207. https://doi.org/10.1111/j.1567-1364.2008.00412.x
Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., … Johnston, M. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature, 418(6896), 387-391. https://doi.org/10.1038/nature00935
Giorello, F., Valera, M. J., Martin, V., Parada, A., Salzman, V., Camesasca, L., … Carrau, F. (2019). Genomic and transcriptomic basis of Hanseniaspora vineae's impact on flavor diversity and wine quality. Applied and Environmental Microbiology, 85(1), e01959-18. https://doi.org/10.1128/AEM.01959-18
Hasson, M. S., Muscate, A., McLeish, M. J., Polovnikova, L. S., Gerlt, J. A., Kenyon, G. L., … Ringe, D. (1998). The crystal structure of benzoylformate decarboxylase at 1.6 Å resolution: Diversity of catalytic residues in thiamin diphosphate-dependent enzymes. The Biochemist, 37(28), 9918-9930. https://doi.org/10.1021/bi973047e
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
Iding, H., Siegert, P., Mesch, K., & Pohl, M. (1998). Application of α-keto acid decarboxylases in biotransformations. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1385(2), 307-322. https://doi.org/10.1016/S0167-4838(98)00076-4
Jensen, K. A., Evans, K. M., Kirk, T. K., & Hammel, K. E. (1994). Biosynthetic pathway for veratryl alcohol in the ligninolytic fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 60(2), 709-714. https://doi.org/10.1128/AEM.60.2.709-714.1994
Kneen, M. M., Stan, R., Yep, A., Tyler, R. P., Saehuan, C., & McLeish, M. J. (2011). Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. The FEBS Journal, 278(11), 1842-1853. https://doi.org/10.1111/j.1742-4658.2011.08103.x
Lapadatescu, C., Giniès, C., Le Quéré, J. L., & Bonnarme, P. (2000). Novel scheme for biosynthesis of aryl metabolites from l-phenylalanine in the fungus Bjerkandera adusta. Applied and Environmental Microbiology, 66(4), 1517-1522. https://doi.org/10.1128/AEM.66.4.1517-1522.2000
Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(323), 1-16. https://doi.org/10.1186/1471-2105-12-323
Liberal, A. T. S., Carazzolle, M. F., Pereira, G. A., Simões, D. A., & de Morais, M. A. (2012). The yeast Dekkera bruxellensis genome contains two orthologs of the ARO10 gene encoding for phenylpyruvate decarboxylase. World Journal of Microbiology and Biotechnology, 28(7), 2473-2478. https://doi.org/10.1007/s11274-012-1054-x
Martin, V., Boido, E., Giorello, F., Mas, A., Dellacassa, E., & Carrau, F. (2016). Effect of yeast assimilable nitrogen on the synthesis of phenolic aroma compounds by Hanseniaspora vineae strains. Yeast, 33(7), 323-328. https://doi.org/10.1002/yea.3159
Martin, V., Giorello, F., Fariña, L., Minteguiaga, M., Salzman, V., Boido, E., … Carrau, F. (2016). De novo synthesis of benzenoid compounds by the yeast Hanseniaspora vineae increases the flavor diversity of wines. Journal of Agricultural and Food Chemistry, 64(22), 4574-4583. https://doi.org/10.1021/acs.jafc.5b05442
Qualley, A. V., Widhalm, J. R., Adebesin, F., Kish, C. M., & Dudareva, N. (2012). Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 109(40), 16383-16388. https://doi.org/10.1073/pnas.1211001109
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. https://doi.org/10.1093/bioinformatics/btp616
Romagnoli, G., Luttik, M. A., Kötter, P., Pronk, J. T., & Daran, J. M. (2012). Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 78(21), 7538-7548. https://doi.org/10.1128/AEM.01675-12
Schütz, A., Sandalova, T., Ricagno, S., Hübner, G., König, S., & Schneider, G. (2003). Crystal structure of thiamindiphosphate-dependent indolepyruvate decarboxylase from Enterobacter cloacae, an enzyme involved in the biosynthesis of the plant hormone indole-3-acetic acid. European Journal of Biochemistry, 270(10), 2312-2321. https://doi.org/10.1046/j.1432-1033.2003.03601.x
Spaepen, S., Versées, W., Gocke, D., Pohl, M., Steyaert, J., & Vanderleyden, J. (2007). Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. Journal of Bacteriology, 189(21), 7626-7633. https://doi.org/10.1128/JB.00830-07
Stefely, J. A., Kwiecien, N. W., Freiberger, E. C., Richards, A. L., Jochem, A., Rush, M. J. P. … Coon, J. J. (2016). Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling. Nature Biotechnology, 34, 1191-1197. https://doi.org/10.1038/nbt.3683
Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599. https://doi.org/10.1093/molbev/msm092
Tsui, H. S., & Clarke, C. F. (2019). Ubiquinone biosynthetic complexes in prokaryotes and eukaryotes. Cell Chemical Biology, 26(4), 465-467. https://doi.org/10.1016/j.chembiol.2019.04.005
Valera, M. J., Boido, E., Ramos, J. C., Manta, E., Radi, R., Dellacassa, E., & Carrau, F. (2020). Mandelate pathway, an alternative to the PAL pathway for the synthesis of benzenoids in Ascomycete yeasts. Applied and Environmental Microbiology, 86(17), 1-32. https://doi.org/10.1128/AEM.00701-20
Versees, W., Spaepen, S., Vanderleyden, J., & Steyaert, J. (2007). The crystal structure of phenylpyruvate decarboxylase from Azospirillum brasilense at 1.5 Å resolution: Implications for its catalytic and regulatory mechanism. The FEBS Journal, 274(9), 2363-2375. https://doi.org/10.1111/j.1742-4658.2007.05771.x
Vuralhan, Z., Luttik, M. A., Tai, S. L., Boer, V. M., Morais, M. A., Schipper, D., … Pronk, J. T. (2005). Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 71(6), 3276-3284. https://doi.org/10.1128/AEM.71.6.3276-3284.2005
Wang, X., Zeng, L., Liao, Y., Zhou, Y., Xu, X., Dong, F., & Yang, Z. (2019). An alternative pathway for the formation of aromatic aroma compounds derived from l-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves. Food Chemistry, 270, 17-24. https://doi.org/10.1016/j.foodchem.2018.07.056
Widhalm, J. R., & Dudareva, N. (2015). A familiar ring to it: Biosynthesis of plant benzoic acids. Molecular Plant, 8(1), 83-97. https://doi.org/10.1016/j.molp.2014.12.001
Zhao, K., Yang, W., Zhou, Y., Zhang, J., Li, Y., Ahmad, S., & Zhang, Q. (2017). Comparative transcriptome reveals benzenoid biosynthesis regulation as inducer of floral scent in the woody plant Prunus mume. Frontiers in Plant Science, 8(319), 1-13. https://doi.org/10.3389/fpls.2017.00319