Fungal communities living within leaves of native Hawaiian dicots are structured by landscape-scale variables as well as by host plants.
Hawai'i
Island biogeography
endophytes
fungi
generalized dissimilarity modelling
high-throughput sequencing
phylogeography
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
10
03
2020
revised:
24
06
2020
accepted:
26
06
2020
pubmed:
9
7
2020
medline:
22
6
2021
entrez:
9
7
2020
Statut:
ppublish
Résumé
A phylogenetically diverse array of fungi live within healthy leaf tissue of dicotyledonous plants. Many studies have examined these endophytes within a single plant species and/or at small spatial scales, but landscape-scale variables that determine their community composition are not well understood, either across geographic space, across climatic conditions, or in the context of host plant phylogeny. Here, we evaluate the contributions of these variables to endophyte beta diversity using a survey of foliar endophytic fungi in native Hawaiian dicots sampled across the Hawaiian archipelago. We used Illumina technology to sequence fungal ITS1 amplicons to characterize foliar endophyte communities across five islands and 80 host plant genera. We found that communities of foliar endophytic fungi showed strong geographic structuring between distances of 7 and 36 km. Endophyte community structure was most strongly associated with host plant phylogeny and evapotranspiration, and was also significantly associated with NDVI, elevation and solar radiation. Additionally, our bipartite network analysis revealed that the five islands we sampled each harboured significantly specialized endophyte communities. These results demonstrate how the interaction of factors at large and small spatial and phylogenetic scales shapes fungal symbiont communities.
Substances chimiques
DNA, Fungal
0
Banques de données
figshare
['10.6084/m9.figshare.6244346.v1']
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
3103-3116Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
Arnold, A. E., & Engelbrecht, B. M. J. (2007). Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. Journal of Tropical Ecology, 23(3), 369-372. https://doi.org/10.1017/S0266467407004038
Arnold, A. E., & Lutzoni, F. (2007). Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology, 88(3), 541-549. https://doi.org/10.1890/05-1459
Bachmaier, M., & Backes, M. (2008). Variogram or semivariogram? Understanding the variances in a variogram. Precision Agriculture, 9(3), 173-175. https://doi.org/10.1007/s11119-008-9056-2
Bahnweg, G., Heller, W., Stich, S., Knappe, C., Betz, G., Heerdt, C., … Sandermann, H. (2005). Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biology, 7(6), 659-669. https://doi.org/10.1055/s-2005-872943
Bayman, P., Angulo-Sandoval, P., Báez-Ortiz, Z., & Lodge, D. J. (1998). Distribution and dispersal of Xylaria endophytes in two tree species in Puerto Rico. Mycological Research, 102(8), 944-948. https://doi.org/10.1017/S095375629700590X
Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., … Nilsson, R. H. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4(10), 914-919. https://doi.org/10.1111/2041-210X.12073
Blackwell, M. (2011). The fungi: 1, 2, 3 … 5.1 million species? American Journal of Botany, 98(3), 426-438. https://doi.org/10.3732/ajb.1000298
Blackwell, M., Hibbett, D. S., Taylor, J. W., & Spatafora, J. W. (2006). Research coordination networks: A phylogeny for kingdom fungi (Deep Hypha). Mycologia, 98(6), 829-837. https://doi.org/10.3852/mycologia.98.6.829
Borcard, D., & Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153(1-2), 51-68. https://doi.org/10.1016/S0304-3800(01)00501-4
Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J., & Bordenstein, S. R. (2016). Phylosymbiosis: Relationships and functional effects of microbial communities across host evolutionary history. PLoS Biology, 14(11), e2000225. https://doi.org/10.1371/journal.pbio.2000225
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581-583. https://doi.org/10.1038/nmeth.3869
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. https://doi.org/10.1038/nmeth.f.303
Christian, N., Sedio, B. E., Florez-Buitrago, X., Ramírez-Camejo, L. A., Rojas, E. I., Mejía, L. C., … Herre, E. A. (2020). Host affinity of endophytic fungi and the potential for reciprocal interactions involving host secondary chemistry. American Journal of Botany, 107(2), 219-228. https://doi.org/10.1002/ajb2.1436
Cobian, G. M., Egan, C. P., & Amend, A. S. (2019). Plant-microbe specificity varies as a function of elevation. The ISME Journal, 13, 2778. https://doi.org/10.1038/s41396-019-0470-4
Coince, A., Cordier, T., Lengellé, J., Defossez, E., Vacher, C., Robin, C., … Marçais, B. (2014). Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS ONE, 9(6), e100668. https://doi.org/10.1371/journal.pone.0100668
Darcy, J. L., King, A. J., Gendron, E. M. S., & Schmidt, S. K. (2017). Spatial autocorrelation of microbial communities atop a debris-covered glacier is evidence of a supraglacial chronosequence. FEMS Microbiology Ecology, 93(8). https://doi.org/10.1093/femsec/fix095
Darcy, J. L., Swift, S. O. I., Cobian, G. M., Zahn, G., Perry, B. A., & Amend, A. S. (2017). Foliar endophytic fungi of native Hawaiian plants. NCBI SRA, PRJNA470970.
Davis, E. C., & Shaw, A. J. (2008). Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. American Journal of Botany, 95(8), 914-924. https://doi.org/10.3732/ajb.2006463
Dormann, C. F., Gruber, B., & Fruend, J. (2008). Introducing the bipartite package: Analysing ecological networks. R News, 8(2), 8-11.
Felber, A. C., Orlandelli, R. C., Rhoden, S. A., Garcia, A., Costa, A. T., Azevedo, J. L., & Pamphile, J. A. (2016). Bioprospecting foliar endophytic fungi of Vitis labrusca Linnaeus, Bordô and Concord cv. Annals of Microbiology, 66(2), 765-775. https://doi.org/10.1007/s13213-015-1162-6
Ferrier, S., Manion, G., Elith, J., & Richardson, K. (2007). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13(3), 252-264. https://doi.org/10.1111/j.1472-4642.2007.00341.x
Fitzpatrick, M. C., Sanders, N. J., Normand, S., Svenning, J. C., Ferrier, S., Gove, A. D., & Dunn, R. R. (2013). Environmental and historical imprints on beta diversity: Insights from variation in rates of species turnover along gradients. Proceedings of the Royal Society B: Biological Sciences, 280(1768), 20131201. https://doi.org/10.1098/rspb.2013.1201
Fouquier, J., Rideout, J. R., Bolyen, E., Chase, J., Shiffer, A., McDonald, D., … Kelley, S. T. (2016). Ghost-tree: Creating hybrid-gene phylogenetic trees for diversity analyses. Microbiome, 4(11), 1-10. https://doi.org/10.1186/s40168-016-0153-6
Giambelluca, T. W., Chen, Q. I., Frazier, A. G., Price, J. P., Chen, Y.-L., Chu, P.-S., … Delparte, D. M. (2013). Online rainfall atlas of Hawai'i. Bulletin of the American Meteorological Society, 94(3), 313-316. https://doi.org/10.1175/BAMS-D-11-00228.1
Giambelluca, T. W., Shuai, X., Barnes, M. L., Alliss, R. J., Longman, R. J., Miura, T., … Businger, A. D. (2014). Evapotranspiration of Hawai‘i. Final report submitted to the U.S. Army Corps of Engineers-Honolulu District, and the Commission on Water Resource Management, State of Hawaii.
Giauque, H., & Hawkes, C. V. (2013). Climate affects symbiotic fungal endophyte diversity and performance. American Journal of Botany, 100(7), 1435-1444. https://doi.org/10.3732/ajb.1200568
González-Teuber, M. (2016). The defensive role of foliar endophytic fungi for a South American tree. AoB Plants, 8, plw050. https://doi.org/10.1093/aobpla/plw050
Hawksworth, D. L., & Rossman, A. Y. (1997). Where are all the undescribed fungi? Phytopathology, 87(9), 888-891. https://doi.org/10.1094/PHYTO.1997.87.9.888
Higgins, K. L., Arnold, A. E., Coley, P. D., & Kursar, T. A. (2014). Communities of fungal endophytes in tropical forest grasses: Highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecology, 8(1), 1-11. https://doi.org/10.1016/j.funeco.2013.12.005
Hijmans, R. J., van Etten, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., Lamigueiro, O. P., … Shortridge, A. (2014). Package “raster”. R, 2008, 1-27. https://doi.org/10.1103/PhysRevE.74.016110
Huang, Y.-L., Devan, M. M. N., U'Ren, J. M., Furr, S. H., & Arnold, A. E. (2016). Pervasive effects of wildfire on foliar endophyte communities in montane forest trees. Microbial Ecology, 71(2), 452-468. https://doi.org/10.1007/s00248-015-0664-x
Jumpponen, A., & Jones, K. L. (2009). Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytologist, 184(2), 438-448. https://doi.org/10.1111/j.1469-8137.2009.02990.x
Jumpponen, A., & Jones, K. L. (2010). Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytologist, 186(2), 496-513. https://doi.org/10.1111/j.1469-8137.2010.03197.x
Kato, S., Fukasawa, Y., & Seiwa, K. (2017). Canopy tree species and openness affect foliar endophytic fungal communities of understory seedlings. Ecological Research, 32(2), 157-162. https://doi.org/10.1007/s11284-016-1426-z
Keirle, M. R., Avis, P. G., Feldheim, K. A., Hemmes, D. E., & Mueller, G. M. (2011). Investigating the allelic evolution of an imperfect microsatellite locus in the Hawaiian mushroom rhodocollybia laulaha. Journal of Heredity, 102(6), 727-734. https://doi.org/10.1093/jhered/esr099
Kembel, S. W., & Mueller, R. C. (2014). Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany-Botanique, 92(4), 303-311. https://doi.org/10.1139/cjb-2013-0194
King, A. J., Freeman, K. R., McCormick, K. F., Lynch, R. C., Lozupone, C., Knight, R., & Schmidt, S. K. (2010). Biogeography and habitat modelling of high-alpine bacteria. Nature Communications, 1(5), 53. https://doi.org/10.1038/ncomms1055
Kivlin, S. N., Hawkes, C. V., & Treseder, K. K. (2011). Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 43(11), 2294-2303. https://doi.org/10.1016/j.soilbio.2011.07.012
Lambers, H., Chapin, F. S., & Pons, T. L. (2008). Plant water relations. In Plant physiological ecology (pp. 163-223). https://doi.org/10.1007/978-0-387-78341-3_5
Landesman, W. J., Nelson, D. M., & Fitzpatrick, M. C. (2014). Soil properties and tree species drive ß-diversity of soil bacterial communities. Soil Biology and Biochemistry, 76, 201-209. https://doi.org/10.1016/j.soilbio.2014.05.025
Lewis, G. C., Ravel, C., Naffaa, W., Astier, C., & Charmet, G. (1997). Occurrence of Acremonium endophytes in wild populations of Lolium spp. in European countries and a relationship between level of infection and climate in France. Annals of Applied Biology, 130(2), 227-238. https://doi.org/10.1111/j.1744-7348.1997.tb06828.x
Liu, J., Zhao, J., Wang, G., & Chen, J. (2019). Host identity and phylogeny shape the foliar endophytic fungal assemblages of Ficus. Ecology and Evolution. https://doi.org/10.1002/ece3.5568
Lozupone, C., & Knight, R. (2005). UniFrac: A new phylogenetic method for comparing microbial communities UniFrac: A new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71(12), 8228-8235. https://doi.org/10.1128/AEM.71.12.8228
Lumibao, C. Y., Borer, E. T., Condon, B., Kinkel, L., May, G., & Seabloom, E. W. (2019). Site-specific responses of foliar fungal microbiomes to nutrient addition and herbivory at different spatial scales. Ecology and Evolution, 9(21), 12231-12244. https://doi.org/10.1002/ece3.5711
Lunetta, R. S., Knight, J. F., Ediriwickrema, J., Lyon, J. G., & Worthy, L. D. (2006). Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 105(2), 142-154. https://doi.org/10.1016/j.rse.2006.06.018
Massimo, N. C., Nandi Devan, M. M., Arendt, K. R., Wilch, M. H., Riddle, J. M., Furr, S. H., … Arnold, A. E. (2015). Fungal endophytes in aboveground tissues of desert plants: Infrequent in culture, but highly diverse and distinctive symbionts. Microbial Ecology, 70(1), 61-76. https://doi.org/10.1007/s00248-014-0563-6
MejÃa, L. C., Herre, E. A., Sparks, J. P., Winter, K., GarcÃa, M. N., Van Bael, S. A., … Maximova, S. N. (2014). Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology, 5, 479. https://doi.org/10.3389/fmicb.2014.00479
Nilsson, R. H. (2011). Molecular identification of fungi: Rationale, philosophical concerns, and the UNITE database. The Open Applied Informatics Journal, 5(1), 81-86. https://doi.org/10.2174/1874136301105010081
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGinn, D., … Wagner, H. (2016). vegan: Community Ecology Package, Vienna:R Foundation for Statistical Computing.
Oono, R., Lefèvre, E., Simha, A., & Lutzoni, F. (2015). A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biology, 119(10), 917-928. https://doi.org/10.1016/J.FUNBIO.2015.07.003
Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526-528. https://doi.org/10.1093/bioinformatics/bty633
Pebesma, E., Rowlingson, B., & Rogerbivandnhhno, M. R. B. (2012). Package ‘rgdal’. R-CRAN, 4, 1-41. https://doi.org/10.1353/lib.0.0050
Polonio, J. C., Almeida, T. T., Garcia, A., Mariucci, G. E. G., Azevedo, J. L., Rhoden, S. A., & Pamphile, J. A. (2015). Biotechnological prospecting of foliar endophytic fungi of guaco (Mikania glomerata Spreng.) with antibacterial and antagonistic activity against phytopathogens. Genetics and Molecular Research, 14(3), 7297-7309. https://doi.org/10.4238/2015.July.3.5
Porras-Alfaro, A., & Bayman, P. (2011). Hidden fungi, emergent properties: Endophytes and microbiomes. Annual Review of Phytopathology, 49(1), 291-315. https://doi.org/10.1146/annurev-phyto-080508-081831
Purevdorj, T. S., Tateishi, R., Ishiyama, T., & Honda, Y. (1998). Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing, 19(18), 3519-3535. https://doi.org/10.1080/014311698213795
Qian, H., & Jin, Y. (2016). An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 9(2), 233-239. https://doi.org/10.1093/jpe/rtv047
R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, 1, 409. https://doi.org/10.1007/978-3-540-74686-7
Robeson, M. S., King, A. J., Freeman, K. R., Birky, C. W., Martin, A. P., & Schmidt, S. K. (2011). Soil rotifer communities are extremely diverse globally but spatially autocorrelated locally. Proceedings of the National Academy of Sciences of the United States of America, 108(11), 4406-4410. https://doi.org/10.1073/pnas.1012678108
Rodriguez, R. J., White, J. F., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: Diversity and functional roles. The New Phytologist, 182(2), 314-330. https://doi.org/10.1111/j.1469-8137.2009.02773.x
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ Preprints, 4, e2409v1. https://doi.org/10.7287/peerj.preprints.2409v1
Saucedo-García, A., Anaya, A. L., Espinosa-García, F. J., & González, M. C. (2014). Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexio. PLoS ONE, 9(6), e98454. https://doi.org/10.1371/journal.pone.0098454
Smith, D. P., & Peay, K. G. (2014). Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE, 9(2), e90234. https://doi.org/10.1371/journal.pone.0090234
Stone, J. K., Bacon, C. W., & White, J. F. (2000). An overview of endophytic microbes: Endophytism defined. Microbial Endophytes, (January 2000), 3-29. https://doi.org/10.1163/_q3_SIM_00374
Tardieu, F., Lafarge, T., & Simonneau, T. (1996). Stomatal control by fed or endogenous xylem ABA in sunflower: Interpretation of correlations between leaf water potential and stomatal conductance in anisohydric species. Plant, Cell and Environment, 19(1), 75-84. https://doi.org/10.1111/j.1365-3040.1996.tb00228.x
Tipton, L., Zahn, G., Datlof, E., Kivlin, S. N., Sheridan, P., Amend, A. S., & Hynson, N. A. (2019). Fungal aerobiota are not affected by time nor environment over a 13-year time series at the Mauna Loa Observatory. Proceedings of the National Academy of Sciences of the United States of America. (in press)116(54), 25728-25733.
Unterseher, M., Petzold, A., & Schnittler, M. (2012). Xerotolerant foliar endophytic fungi of Populus euphratica from the Tarim River basin, Central China are conspecific to endophytic ITS phylotypes of Populus tremula from temperate Europe. Fungal Diversity, 54(1), 133-142. https://doi.org/10.1007/s13225-012-0167-8
U'Ren, J. M., & Arnold, A. E. (2016). Diversity, taxonomic composition, and functional aspects of fungal communities in living, senesced, and fallen leaves at five sites across North America. PeerJ, 4, e2768. https://doi.org/10.7717/peerj.2768
U'Ren, J. M., Lutzoni, F., Miadlikowska, J., Laetsch, A. D., & Arnold, A. E. (2012). Host and geographic structure of endophytic and endolichenic fungi at a continental scale. American Journal of Botany, 99(5), 898-914. https://doi.org/10.3732/ajb.1100459
U'Ren, J. M., Lutzoni, F., Miadlikowska, J., Zimmerman, N. B., Carbone, I., May, G., & Arnold, A. E. (2019). Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nature Ecology & Evolution, 3(10), 1430-1437. https://doi.org/10.1038/s41559-019-0975-2
Vázquez, D. P., Melián, C. J., Williams, N. M., Blüthgen, N., Krasnov, B. R., & Poulin, R. (2007). Species abundance and asymmetric interaction strength in ecological networks. Oikos, 116(7), 1120-1127. https://doi.org/10.1111/j.0030-1299.2007.15828.x
Vincent, J. B., Weiblen, G. D., & May, G. (2016). Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees. Molecular Ecology, 25(3), 825-841. https://doi.org/10.1111/mec.13510
Ward, T. L., Dominguez-Bello, M. G., Heisel, T., Al-Ghalith, G., Knights, D., & Gale, C. A. (2018). Development of the human mycobiome over the first month of life and across body sites. mSystems, 3(3), e00140-e00217. https://doi.org/10.1128/mSystems.00140-17
Warren, D. L., Cardillo, M., Rosauer, D. F., & Bolnick, D. I. (2014). Mistaking geography for biology: Inferring processes from species distributions. Trends in Ecology and Evolution, 29, 572-580. https://doi.org/10.1016/j.tree.2014.08.003
Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., … Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310-1324. https://doi.org/10.1111/j.1461-0248.2010.01515.x
Ziegler, A. C. (2002). Hawaiian natural history, ecology, and evolution. Hawaiian Natural History, Ecology, and Evolution. https://doi.org/10.1515/9780824842437
Zimmerman, N. B., & Vitousek, P. M. (2012). Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proceedings of the National Academy of Sciences of the United States of America, 109(32), 13022-13027. https://doi.org/10.1073/pnas.1209872109