Development of Artificial Plasma Membranes Derived Nanovesicles Suitable for Drugs Encapsulation.
drugs-delivery
extracellular vesicles
nanomedicine
Journal
Cells
ISSN: 2073-4409
Titre abrégé: Cells
Pays: Switzerland
ID NLM: 101600052
Informations de publication
Date de publication:
06 07 2020
06 07 2020
Historique:
received:
19
06
2020
revised:
01
07
2020
accepted:
02
07
2020
entrez:
10
7
2020
pubmed:
10
7
2020
medline:
13
4
2021
Statut:
epublish
Résumé
Extracellular vesicles (EVs) are considered as promising nanoparticle theranostic tools in many pathological contexts. The increasing clinical employment of therapeutic nanoparticles is contributing to the development of a new research area related to the design of artificial EVs. To this aim, different approaches have been described to develop mimetic biologically functional nanovescicles. In this paper, we suggest a simplified procedure to generate plasma membrane-derived nanovesicles with the possibility to efficiently encapsulate different drugs during their spontaneously assembly. After physical and molecular characterization by Tunable Resistive Pulse Sensing (TRPS) technology, transmission electron microscopy, and flow cytometry, as a proof of principle, we have loaded into mimetic EVs the isoquinoline alkaloid Berberine chloride and the chemotherapy compounds Temozolomide or Givinostat. We demonstrated the fully functionality of these nanoparticles in drug encapsulation and cell delivery, showing, in particular, a similar cytotoxic effect of direct cell culture administration of the anticancer drugs. In conclusion, we have documented the possibility to easily generate scalable nanovesicles with specific therapeutic cargo modifications useful in different drug delivery contexts.
Identifiants
pubmed: 32640653
pii: cells9071626
doi: 10.3390/cells9071626
pmc: PMC7408059
pii:
doi:
Substances chimiques
Membranes, Artificial
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Drug Deliv. 2018 Nov;25(1):241-255
pubmed: 29334272
Exp Mol Med. 2019 Mar 15;51(3):1-12
pubmed: 30872574
Analyst. 2015 May 21;140(10):3318-34
pubmed: 25738184
J Cell Physiol. 2014 Nov;229(11):1863-73
pubmed: 24691646
Kidney Int. 2010 Nov;78(9):838-48
pubmed: 20703216
Clin Cancer Res. 2005 Apr 1;11(7):2747-55
pubmed: 15814657
Anal Biochem. 2019 Nov 1;584:113390
pubmed: 31401005
J Trauma Acute Care Surg. 2012 Aug;73(2):401-6; discussion 406-7
pubmed: 22846946
Future Med Chem. 2019 Sep;11(18):2459-2480
pubmed: 31544490
J Extracell Vesicles. 2016 Oct 31;5:32945
pubmed: 27802845
Front Pharmacol. 2018 Sep 26;9:1116
pubmed: 30319428
Molecules. 2020 Jan 23;25(3):
pubmed: 31979318
Lab Chip. 2012 Dec 21;12(24):5202-10
pubmed: 23111789
Cancer Res. 2007 Apr 1;67(7):2912-5
pubmed: 17409393
Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:1092-102
pubmed: 27612807
PLoS One. 2014 Feb 14;9(2):e88797
pubmed: 24551164
Physiology (Bethesda). 2005 Feb;20:22-7
pubmed: 15653836
J Extracell Vesicles. 2018 Jan 17;7(1):1422676
pubmed: 29372017
Methods. 2020 May 1;177:103-113
pubmed: 31917274
PLoS One. 2013 Sep 16;8(9):e73790
pubmed: 24066071
Methods. 2015 Oct 1;87:46-58
pubmed: 26044649
Cells. 2019 Apr 12;8(4):
pubmed: 31013754
Br J Haematol. 1967 May;13(3):269-88
pubmed: 6025241
Thromb Res. 2003 Feb 15;109(4):175-80
pubmed: 12757771
Cell Oncol. 2008;30(4):337-47
pubmed: 18607068
N Engl J Med. 2005 Mar 10;352(10):997-1003
pubmed: 15758010
Proteomics. 2019 Apr;19(8):e1800161
pubmed: 30790448
Front Cell Dev Biol. 2015 Oct 20;3:65
pubmed: 26539435
Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22
pubmed: 18228490
Cancer Genomics Proteomics. 2020 Mar-Apr;17(2):117-130
pubmed: 32108034
Circ Res. 2011 May 13;108(10):1284-97
pubmed: 21566224
Stem Cell Reports. 2017 May 9;8(5):1214-1225
pubmed: 28494937
J Cell Biol. 2013 Feb 18;200(4):373-83
pubmed: 23420871
Pharmacol Res. 2016 Sep;111:487-500
pubmed: 27394168
Materials (Basel). 2019 May 15;12(10):
pubmed: 31096609
Circ Res. 2010 Oct 29;107(9):1047-57
pubmed: 21030722
ACS Nano. 2013 Sep 24;7(9):7698-710
pubmed: 24004438
Nanomedicine. 2011 Dec;7(6):780-8
pubmed: 21601655
Mol Ther. 2011 Oct;19(10):1769-79
pubmed: 21915101
J Neurooncol. 2017 Jul;133(3):455-467
pubmed: 28527008
Front Mol Neurosci. 2016 Oct 27;9:107
pubmed: 27833530
Nat Cell Biol. 2008 May;10(5):619-24
pubmed: 18425114
Cell. 2014 Oct 23;159(3):499-513
pubmed: 25417103
J Clin Invest. 2016 Apr 1;126(4):1152-62
pubmed: 27035807
J Extracell Vesicles. 2015 May 27;4:26883
pubmed: 26022510
J Extracell Vesicles. 2014 Sep 30;3:
pubmed: 25317276
Int J Mol Sci. 2017 Feb 12;18(2):
pubmed: 28208686
J Proteomics. 2013 Feb 21;79:299-304
pubmed: 23201117
Biol Reprod. 2012 Apr 05;86(4):103
pubmed: 22205696
J Extracell Vesicles. 2019 Mar 21;8(1):1587567
pubmed: 30949308
Int J Nanomedicine. 2012;7:1525-41
pubmed: 22619510
EMBO Mol Med. 2013 Feb;5(2):235-49
pubmed: 23165896
Molecules. 2014 Aug 15;19(8):12349-67
pubmed: 25153862
Leukemia. 2006 Sep;20(9):1487-95
pubmed: 16791265