Hypoxia Promotes Prostate Cancer Aggressiveness by Upregulating EMT-Activator Zeb1 and SK3 Channel Expression.
Cell Line, Tumor
Cell Movement
Eicosapentaenoic Acid
/ pharmacology
Epithelial-Mesenchymal Transition
Glycolipids
/ pharmacology
Humans
Hypoxia
/ physiopathology
Linoleic Acid
/ pharmacology
Male
Prostatic Neoplasms
/ genetics
Small-Conductance Calcium-Activated Potassium Channels
/ antagonists & inhibitors
Tumor Microenvironment
Zinc Finger E-box-Binding Homeobox 1
/ metabolism
Zeb1
calcium
hypoxia
lipids
prostate cancer
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
06 Jul 2020
06 Jul 2020
Historique:
received:
05
05
2020
revised:
01
07
2020
accepted:
03
07
2020
entrez:
10
7
2020
pubmed:
10
7
2020
medline:
9
3
2021
Statut:
epublish
Résumé
Hypoxia is a well-established feature of prostate cancer (PCa) and is associated with disease aggressiveness. The hypoxic microenvironment initiates multiple adaptive responses including epithelial-to-mesenchymal transition (EMT) and a remodeling of calcium homeostasis involved in cancer progression. In the present study, we identified a new hypoxia signaling pathway with a positive feedback loop between the EMT transcription factor Zeb1 and SK3, a Ca
Identifiants
pubmed: 32640738
pii: ijms21134786
doi: 10.3390/ijms21134786
pmc: PMC7369999
pii:
doi:
Substances chimiques
1-O-hexadecyl-2-O-methylglycero-3-lactose
0
Glycolipids
0
KCNN3 protein, human
0
Small-Conductance Calcium-Activated Potassium Channels
0
ZEB1 protein, human
0
Zinc Finger E-box-Binding Homeobox 1
0
Linoleic Acid
9KJL21T0QJ
Eicosapentaenoic Acid
AAN7QOV9EA
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Nat Rev Cancer. 2017 Jun;17(6):367-380
pubmed: 28386091
Cell. 2007 Dec 14;131(6):1047-58
pubmed: 18083096
Nat Cell Biol. 2014 Sep;16(9):864-75
pubmed: 25086746
Am J Pathol. 2019 Jun;189(6):1268-1275
pubmed: 30954471
J Pathol. 2014 Dec;234(4):514-25
pubmed: 25065497
Sci Rep. 2017 Nov 21;7(1):15918
pubmed: 29162839
PLoS One. 2015 Jun 09;10(6):e0129603
pubmed: 26057751
J Clin Invest. 2013 Sep;123(9):3664-71
pubmed: 23999440
Life Sci. 2018 Jun 15;203:255-267
pubmed: 29715470
Eur J Cancer. 2018 Mar;91:107-115
pubmed: 29413967
Cancer Res. 2013 Aug 1;73(15):4852-61
pubmed: 23774210
Am J Cancer Res. 2011;1(7):897-912
pubmed: 22016835
Oncotarget. 2016 Jun 14;7(24):36168-36184
pubmed: 27102434
Br J Cancer. 2015 Jan 20;112(2):382-90
pubmed: 25461803
Biochim Biophys Acta. 2015 Oct;1848(10 Pt B):2502-11
pubmed: 25150047
Cancers (Basel). 2019 Nov 18;11(11):
pubmed: 31752242
Cancer Lett. 2015 Apr 1;359(1):107-16
pubmed: 25592037
Nat Rev Cancer. 2002 Jan;2(1):38-47
pubmed: 11902584
Semin Radiat Oncol. 2015 Oct;25(4):260-72
pubmed: 26384274
J Cell Sci. 2017 Jul 15;130(14):2292-2305
pubmed: 28559303
Nat Rev Mol Cell Biol. 2014 Mar;15(3):178-96
pubmed: 24556840
Hum Pathol. 2017 Mar;61:26-32
pubmed: 27818287
Oncol Lett. 2018 Mar;15(3):3482-3489
pubmed: 29467870
Front Oncol. 2020 Apr 08;10:486
pubmed: 32322559
Int J Biochem Cell Biol. 2018 Apr;97:73-77
pubmed: 29407528
Curr Cancer Drug Targets. 2011 Nov;11(9):1111-25
pubmed: 21999627
Nat Rev Cancer. 2011 Jul 22;11(8):609-18
pubmed: 21779011
Br J Radiol. 2014 Mar;87(1035):20130676
pubmed: 24588669