Evolution of Mutation Rate in Astronomically Large Phytoplankton Populations.
Emiliania huxleyi
Lewontin’s paradox
codon bias
effective population size
mutation accumulation
mutation rate
phytoplankton evolution
Journal
Genome biology and evolution
ISSN: 1759-6653
Titre abrégé: Genome Biol Evol
Pays: England
ID NLM: 101509707
Informations de publication
Date de publication:
01 07 2020
01 07 2020
Historique:
accepted:
02
07
2020
pubmed:
10
7
2020
medline:
13
7
2021
entrez:
10
7
2020
Statut:
ppublish
Résumé
Genetic diversity is expected to be proportional to population size, yet, there is a well-known, but unexplained lack of genetic diversity in large populations-the "Lewontin's paradox." Larger populations are expected to evolve lower mutation rates, which may help to explain this paradox. Here, we test this conjecture by measuring the spontaneous mutation rate in a ubiquitous unicellular marine phytoplankton species Emiliania huxleyi (Haptophyta) that has modest genetic diversity despite an astronomically large population size. Genome sequencing of E. huxleyi mutation accumulation lines revealed 455 mutations, with an unusual GC-biased mutation spectrum. This yielded an estimate of the per site mutation rate µ = 5.55×10-10 (CI 95%: 5.05×10-10 - 6.09×10-10), which corresponds to an effective population size Ne ∼ 2.7×106. Such a modest Ne is surprising for a ubiquitous and abundant species that accounts for up to 10% of global primary productivity in the oceans. Our results indicate that even exceptionally large populations do not evolve mutation rates lower than ∼10-10 per nucleotide per cell division. Consequently, the extreme disparity between modest genetic diversity and astronomically large population size in the plankton species cannot be explained by an unusually low mutation rate.
Identifiants
pubmed: 32645145
pii: 5869440
doi: 10.1093/gbe/evaa131
pmc: PMC7486954
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1051-1059Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P009808/1
Pays : United Kingdom
Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Références
PLoS Biol. 2015 Apr 10;13(4):e1002112
pubmed: 25859758
Mutat Res. 1993 Jan;285(1):61-7
pubmed: 7678134
Mol Biol Evol. 2019 Jan 1;36(1):4-14
pubmed: 30351418
ISME J. 2020 Feb;14(2):347-363
pubmed: 31624346
Mol Biol Evol. 2017 Jun 1;34(6):1319-1334
pubmed: 28087770
PLoS Genet. 2017 May 22;13(5):e1006799
pubmed: 28531201
BMC Bioinformatics. 2011 Aug 04;12:323
pubmed: 21816040
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7386-7391
pubmed: 29941601
Genome Biol Evol. 2019 Jul 1;11(7):1829-1837
pubmed: 31218358
BMC Biotechnol. 2013 Nov 20;13:104
pubmed: 24256843
Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7784-90
pubmed: 9223264
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Gene. 1997 Dec 31;205(1-2):269-78
pubmed: 9461401
Genetics. 2012 Oct;192(2):533-98
pubmed: 22673804
DNA Res. 2004 Feb 29;11(1):1-10
pubmed: 15141941
Cell. 2016 Jul 14;166(2):481-491
pubmed: 27293186
Genetics. 2012 Dec;192(4):1447-54
pubmed: 23051642
Curr Biol. 2018 Jun 4;28(11):1832-1838.e4
pubmed: 29804812
Sci Adv. 2017 Jul 05;3(7):e1700239
pubmed: 28695208
Genome Res. 2010 Sep;20(9):1297-303
pubmed: 20644199
Annu Rev Genet. 2015;49:291-313
pubmed: 26436461
Curr Biol. 2019 May 20;29(10):1584-1591.e3
pubmed: 31056389
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19339-44
pubmed: 23129619
Nat Commun. 2019 Sep 17;10(1):4234
pubmed: 31530807
PLoS Biol. 2012;10(9):e1001388
pubmed: 22984349
Genome Res. 2015 Nov;25(11):1739-49
pubmed: 26260971
Mol Phylogenet Evol. 2008 Dec;49(3):827-31
pubmed: 18838124
Am J Hum Genet. 1950 Jun;2(2):111-76
pubmed: 14771033
Nat Commun. 2019 Mar 20;10(1):1243
pubmed: 30886148
Nat Rev Genet. 2016 Jul;17(7):422-33
pubmed: 27265362
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18488-92
pubmed: 23077252
Gene. 1990 Mar 1;87(1):23-9
pubmed: 2110097
DNA Res. 2005;12(2):151-6
pubmed: 16303746
Philos Trans R Soc Lond B Biol Sci. 2010 Apr 27;365(1544):1203-12
pubmed: 20308095
Science. 2010 Jan 1;327(5961):92-4
pubmed: 20044577
G3 (Bethesda). 2016 Jul 07;6(7):2063-71
pubmed: 27175016
Genome Res. 2014 Nov;24(11):1821-9
pubmed: 25314969
Fly (Austin). 2012 Apr-Jun;6(2):80-92
pubmed: 22728672
Trends Genet. 2010 Aug;26(8):345-52
pubmed: 20594608
Genes (Basel). 2019 Nov 06;10(11):
pubmed: 31698749
Mol Biol Evol. 2015 Jan;32(1):239-43
pubmed: 25371432
Nucleic Acids Res. 2005 Feb 23;33(4):1141-53
pubmed: 15728743
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10177-84
pubmed: 25814499
Genetics. 1998 Apr;148(4):1667-86
pubmed: 9560386
Science. 2000 Sep 29;289(5488):2342-4
pubmed: 11009418
G3 (Bethesda). 2018 Jul 2;8(7):2523-2526
pubmed: 29794165
Mol Biol Evol. 2017 Jul 1;34(7):1770-1779
pubmed: 28379581
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Science. 2008 Apr 18;320(5874):336-40
pubmed: 18420926
Cell. 2014 Mar 13;156(6):1286-1297
pubmed: 24630728
Nature. 2013 Jul 11;499(7457):209-13
pubmed: 23760476
J Mol Evol. 1997 Apr;44(4):383-97
pubmed: 9089078
Nat Rev Genet. 2016 Oct 14;17(11):704-714
pubmed: 27739533
Genome Biol Evol. 2015 Apr 13;7(5):1227-34
pubmed: 25869380
Mol Biol Evol. 2012 Feb;29(2):763-9
pubmed: 21998274